整合營銷服務(wù)商

          電腦端+手機端+微信端=數(shù)據(jù)同步管理

          免費咨詢熱線:

          巧用CSS3-Animation動畫,實現(xiàn)小程序彈幕效果

          近接到公司小程序項目首頁迭代改版的工作,涉及到文章圖文布局改版。主要是精選文章,在首頁推廣入口增加評論彈幕效果,后端彈幕數(shù)據(jù)是隨文章列表接口一次性返回給前端,由前端來處理彈幕數(shù)據(jù)及相關(guān)彈幕交互效果。

          隨后,簡單分析了一下后端接口的數(shù)據(jù)結(jié)構(gòu),以及查詢了一些傳統(tǒng)web端彈幕的js實現(xiàn)方式。

          鑒于我們當前業(yè)務(wù)的后端彈幕數(shù)據(jù)非動態(tài)持續(xù)發(fā)送,而是固定的評論條目,前端處理也僅僅是把文章評論渲染成彈幕并循環(huán)滾動,于是我采用的解決方案是通過css3的Animation動畫屬性來實現(xiàn)。

          下面是拆分出來的部分代碼demo實現(xiàn)效果的動畫演示效果。



          左邊的視頻演示:有序彈幕(固定軌道式,彈幕數(shù)據(jù)劃分為三條固定軌道進行滾動顯示)

          右邊的視頻演示:無序彈幕(每條彈幕的出現(xiàn)位置隨機性);

          如果視頻無法播放的話,可以查看下方對比圖:




          當前代碼邏輯比較適合一些展示型的前端交互效果,比如:資訊類欄目、社交屬性圖文欄目、推廣類廣告位等。

          # 無序彈幕 wxml #

          <view class='dmGroup' wx:for="{{ dmData }}" wx:key="{{ item.id }}" style="top:{{ item.top }}%; animation: dmAnimation {{item.time}}s linear {{ index*3 }}s infinite; ">
           <view class='dmItem'>
           <view class='dm'>
           <view class='avatarBox'>
           <image src='{{ item.sex == 0 ? avatarBoy : avatarGirl }}' class='avatar' mode='aspectFit'></image>
           <image src='{{ item.sex == 0 ? iconBoy : iconGirl }}' class='sex' mode='aspectFit'></image>
           </view>
           <text class='content'>{{ item.content }}</text>
           <image src='{{ iconGood }}' class='icon good' mode='aspectFill'></image>
           <text>{{ item.zanNumber }}</text>
           </view>
           </view>
          </view>
          


          # 無序彈幕 wxss #

          @keyframes dmAnimation{
           from{ left: 100%; }
           to{ left: -100%; }
          }
          


          # 有序彈幕(軌道式) wxml #

          <!-- top -->
          <view class='dmGroup top' style="animation: dmAnimation2 35s linear infinite; ">
           <view class='dmItem' wx:for="{{ dmData }}" wx:if="{{ index < 6 }}" wx:key="{{ item.id }}">
           <view class='dm'>
           <view class='avatarBox'>
           <image src='{{ item.sex == 0 ? avatarBoy : avatarGirl }}' class='avatar' mode='aspectFit'></image>
           <image src='{{ item.sex == 0 ? iconBoy : iconGirl }}' class='sex' mode='aspectFit'></image>
           </view>
           <text class='content'>{{ item.content }}</text>
           <image src='{{ iconGood }}' class='icon good' mode='aspectFill'></image>
           <text>{{ item.zanNumber }}</text>
           </view>
           </view>
          </view>
          <!-- mid -->
          <view class='dmGroup mid' style="animation: dmAnimation2 30s linear 1s infinite; ">
           <view class='dmItem' wx:for="{{ dmData }}" wx:if="{{ index > 5 && index < 10 }}" wx:key="{{ item.id }}">
           <view class='dm'>
           <view class='avatarBox'>
           <image src='{{ item.sex == 0 ? avatarBoy : avatarGirl }}' class='avatar' mode='aspectFit'></image>
           <image src='{{ item.sex == 0 ? iconBoy : iconGirl }}' class='sex' mode='aspectFit'></image>
           </view>
           <text class='content'>{{ item.content }}</text>
           <image src='{{ iconGood }}' class='icon good' mode='aspectFill'></image>
           <text>{{ item.zanNumber }}</text>
           </view>
           </view>
          </view>
          <!-- btm -->
          <view class='dmGroup btm' style="animation: dmAnimation2 45s linear infinite; ">
           <view class='dmItem' wx:for="{{ dmData }}" wx:if="{{ index > 9 }}" wx:key="{{ item.id }}">
           <view class='dm'>
           <view class='avatarBox'>
           <image src='{{ item.sex == 0 ? avatarBoy : avatarGirl }}' class='avatar' mode='aspectFit'></image>
           <image src='{{ item.sex == 0 ? iconBoy : iconGirl }}' class='sex' mode='aspectFit'></image>
           </view>
           <text class='content'>{{ item.content }}</text>
           <image src='{{ iconGood }}' class='icon good' mode='aspectFill'></image>
           <text>{{ item.zanNumber }}</text>
           </view>
           </view>
          </view>
          


          # 有序彈幕 wxss #

          @keyframes dmAnimation2{ 
           0% { transform: translateX(0); } 
           100% { transform: translateX(-130%); } 
          }
          


          # 查看線上項目彈幕效果 #


          # 詳細代碼片段及詳解,請私信喲#

          天講解如何用python爬取芒果TV、騰訊視頻、B站、愛奇藝、知乎、微博這幾個常見常用的影視、輿論平臺的彈幕和評論,這類爬蟲得到的結(jié)果一般用于娛樂、輿情分析,如:新出一部火爆的電影,爬取彈幕評論分析他為什么這么火;微博又出大瓜,爬取底下評論看看網(wǎng)友怎么說,等等這娛樂性分析。

          本文爬取一共六個平臺,十個爬蟲案例,如果只對個別案例感興趣的可以根據(jù):芒果TV、騰訊視頻、B站、愛奇藝、知乎、微博這一順序進行拉取觀看。完整的實戰(zhàn)源碼已在文中,我們廢話不多說,下面開始操作!

          芒果TV

          本文以爬取電影《懸崖之上》為例,講解如何爬取芒果TV視頻的彈幕和評論!

          網(wǎng)頁地址:

          https://www.mgtv.com/b/335313/12281642.html?fpa=15800&fpos=8&lastp=ch_movie
          


          彈幕


          分析網(wǎng)頁

          彈幕數(shù)據(jù)所在的文件是動態(tài)加載的,需要進入瀏覽器的開發(fā)者工具進行抓包,得到彈幕數(shù)據(jù)所在的真實url。當視頻播放一分鐘它就會更新一個json數(shù)據(jù)包,里面包含我們需要的彈幕數(shù)據(jù)。

          得到的真實url:

          https://bullet-ali.hitv.com/bullet/2021/08/14/005323/12281642/0.json
          https://bullet-ali.hitv.com/bullet/2021/08/14/005323/12281642/1.json
          

          可以發(fā)現(xiàn),每條url的差別在于后面的數(shù)字,首條url為0,后面的逐步遞增。視頻一共120:20分鐘,向上取整,也就是121條數(shù)據(jù)包。


          實戰(zhàn)代碼

          import requests
          import pandas as pd
          
          headers = {
              'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
          }
          df = pd.DataFrame()
          for e in range(0, 121):
              print(f'正在爬取第{e}頁')
              resposen = requests.get(f'https://bullet-ali.hitv.com/bullet/2021/08/3/004902/12281642/{e}.json', headers=headers)
              # 直接用json提取數(shù)據(jù)
              for i in resposen.json()['data']['items']:
                  ids = i['ids']  # 用戶id
                  content = i['content']  # 彈幕內(nèi)容
                  time = i['time']  # 彈幕發(fā)生時間
                  # 有些文件中不存在點贊數(shù)
                  try:  
                      v2_up_count = i['v2_up_count']
                  except:
                      v2_up_count = ''
                  text = pd.DataFrame({'ids': [ids], '彈幕': [content], '發(fā)生時間': [time]})
                  df = pd.concat([df, text])
          df.to_csv('懸崖之上.csv', encoding='utf-8', index=False)
          

          結(jié)果展示:

          評論


          分析網(wǎng)頁

          芒果TV視頻的評論需要拉取到網(wǎng)頁下面進行查看。評論數(shù)據(jù)所在的文件依然是動態(tài)加載的,進入開發(fā)者工具,按下列步驟進行抓包:Network→js,最后點擊查看更多評論。

          加載出來的依然是js文件,里面包含評論數(shù)據(jù)。得到的真實url:

          https://comment.mgtv.com/v4/comment/getCommentList?page=1&subjectType=hunantv2014&subjectId=12281642&callback=jQuery1820749973529821774_1628942431449&_support=10000000&_=1628943290494
          https://comment.mgtv.com/v4/comment/getCommentList?page=2&subjectType=hunantv2014&subjectId=12281642&callback=jQuery1820749973529821774_1628942431449&_support=10000000&_=1628943296653
          

          其中有差別的參數(shù)有page_,page是頁數(shù),_是時間戳;url中的時間戳刪除后不影響數(shù)據(jù)完整性,但里面的callback參數(shù)會干擾數(shù)據(jù)解析,所以進行刪除。最后得到url:

          https://comment.mgtv.com/v4/comment/getCommentList?page=1&subjectType=hunantv2014&subjectId=12281642&_support=10000000
          

          數(shù)據(jù)包中每頁包含15條評論數(shù)據(jù),評論總數(shù)是2527,得到最大頁為169。


          實戰(zhàn)代碼

          import requests
          import pandas as pd
          
          headers = {
              'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
          }
          df = pd.DataFrame()
          for o in range(1, 170):
              url = f'https://comment.mgtv.com/v4/comment/getCommentList?page={o}&subjectType=hunantv2014&subjectId=12281642&_support=10000000'
              res = requests.get(url, headers=headers).json()
              for i in res['data']['list']:
                  nickName = i['user']['nickName']  # 用戶昵稱
                  praiseNum = i['praiseNum']  # 被點贊數(shù)
                  date = i['date']  # 發(fā)送日期
                  content = i['content']  # 評論內(nèi)容
                  text = pd.DataFrame({'nickName': [nickName], 'praiseNum': [praiseNum], 'date': [date], 'content': [content]})
                  df = pd.concat([df, text])
          df.to_csv('懸崖之上.csv', encoding='utf-8', index=False)
          

          結(jié)果展示:


          騰訊視頻

          本文以爬取電影《革命者》為例,講解如何爬取騰訊視頻的彈幕和評論!

          網(wǎng)頁地址:

          https://v.qq.com/x/cover/mzc00200m72fcup.html
          

          彈幕


          分析網(wǎng)頁

          依然進入瀏覽器的開發(fā)者工具進行抓包,當視頻播放30秒它就會更新一個json數(shù)據(jù)包,里面包含我們需要的彈幕數(shù)據(jù)。

          得到真實url:

          https://mfm.video.qq.com/danmu?otype=json&callback=jQuery19109541041335587612_1628947050538&target_id=7220956568%26vid%3Dt0040z3o3la&session_key=0%2C32%2C1628947057×tamp=15&_=1628947050569
          https://mfm.video.qq.com/danmu?otype=json&callback=jQuery19109541041335587612_1628947050538&target_id=7220956568%26vid%3Dt0040z3o3la&session_key=0%2C32%2C1628947057×tamp=45&_=1628947050572
          

          其中有差別的參數(shù)有timestamp_。_是時間戳。timestamp是頁數(shù),首條url為15,后面以公差為30遞增,公差是以數(shù)據(jù)包更新時長為基準,而最大頁數(shù)為視頻時長7245秒。依然刪除不必要參數(shù),得到url:

          https://mfm.video.qq.com/danmu?otype=json&target_id=7220956568%26vid%3Dt0040z3o3la&session_key=0%2C18%2C1628418094×tamp=15&_=1628418086509
          


          實戰(zhàn)代碼

          import pandas as pd
          import time
          import requests
          
          headers = {
              'User-Agent': 'Googlebot'
          }
          # 初始為15,7245 為視頻秒長,鏈接以三十秒遞增
          df = pd.DataFrame()
          for i in range(15, 7245, 30):
              url = "https://mfm.video.qq.com/danmu?otype=json&target_id=7220956568%26vid%3Dt0040z3o3la&session_key=0%2C18%2C1628418094×tamp={}&_=1628418086509".format(i)
              html = requests.get(url, headers=headers).json()
              time.sleep(1)
              for i in html['comments']:
                  content = i['content']
                  print(content)
                  text = pd.DataFrame({'彈幕': [content]})
                  df = pd.concat([df, text])
          df.to_csv('革命者_彈幕.csv', encoding='utf-8', index=False)
          

          結(jié)果展示:

          評論


          分析網(wǎng)頁

          騰訊視頻評論數(shù)據(jù)在網(wǎng)頁底部,依然是動態(tài)加載的,需要按下列步驟進入開發(fā)者工具進行抓包:

          點擊查看更多評論后,得到的數(shù)據(jù)包含有我們需要的評論數(shù)據(jù),得到的真實url:

          https://video.coral.qq.com/varticle/6655100451/comment/v2?callback=_varticle6655100451commentv2&orinum=10&oriorder=o&pageflag=1&cursor=0&scorecursor=0&orirepnum=2&reporder=o&reppageflag=1&source=132&_=1628948867522
          https://video.coral.qq.com/varticle/6655100451/comment/v2?callback=_varticle6655100451commentv2&orinum=10&oriorder=o&pageflag=1&cursor=6786869637356389636&scorecursor=0&orirepnum=2&reporder=o&reppageflag=1&source=132&_=1628948867523

          url中的參數(shù)callback以及_刪除即可。重要的是參數(shù)cursor,第一條url參數(shù)cursor是等于0的,第二條url才出現(xiàn),所以要查找cursor參數(shù)是怎么出現(xiàn)的。經(jīng)過我的觀察,cursor參數(shù)其實是上一條url的last參數(shù):


          實戰(zhàn)代碼

          import requests
          import pandas as pd
          import time
          import random
          
          headers = {
              'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
          }
          df = pd.DataFrame()
          a = 1
          # 此處必須設(shè)定循環(huán)次數(shù),否則會無限重復(fù)爬取
          # 281為參照數(shù)據(jù)包中的oritotal,數(shù)據(jù)包中一共10條數(shù)據(jù),循環(huán)280次得到2800條數(shù)據(jù),但不包括底下回復(fù)的評論
          # 數(shù)據(jù)包中的commentnum,是包括回復(fù)的評論數(shù)據(jù)的總數(shù),而數(shù)據(jù)包都包含10條評論數(shù)據(jù)和底下的回復(fù)的評論數(shù)據(jù),所以只需要把2800除以10取整數(shù)+1即可!
          while a < 281:
              if a == 1:
                  url = 'https://video.coral.qq.com/varticle/6655100451/comment/v2?orinum=10&oriorder=o&pageflag=1&cursor=0&scorecursor=0&orirepnum=2&reporder=o&reppageflag=1&source=132'
              else:
                  url = f'https://video.coral.qq.com/varticle/6655100451/comment/v2?orinum=10&oriorder=o&pageflag=1&cursor={cursor}&scorecursor=0&orirepnum=2&reporder=o&reppageflag=1&source=132'
              res = requests.get(url, headers=headers).json()
              cursor = res['data']['last']
              for i in res['data']['oriCommList']:
                  ids = i['id']
                  times = i['time']
                  up = i['up']
                  content = i['content'].replace('\n', '')
                  text = pd.DataFrame({'ids': [ids], 'times': [times], 'up': [up], 'content': [content]})
                  df = pd.concat([df, text])
              a += 1
              time.sleep(random.uniform(2, 3))
              df.to_csv('革命者_評論.csv', encoding='utf-8', index=False)
          

          效果展示:


          B站

          本文以爬取視頻《“ 這是我見過最拽的一屆中國隊奧運冠軍”》為例,講解如何爬取B站視頻的彈幕和評論!

          網(wǎng)頁地址:

          https://www.bilibili.com/video/BV1wq4y1Q7dp
          

          彈幕


          分析網(wǎng)頁

          B站視頻的彈幕不像騰訊視頻那樣,播放視頻就會觸發(fā)彈幕數(shù)據(jù)包,他需要點擊網(wǎng)頁右側(cè)的彈幕列表行的展開,然后點擊查看歷史彈幕獲得視頻彈幕開始日到截至日鏈接:

          鏈接末尾以oid以及開始日期來構(gòu)成彈幕日期url:

          https://api.bilibili.com/x/v2/dm/history/index?type=1&oid=384801460&month=2021-08

          在上面的的基礎(chǔ)之上,點擊任一有效日期即可獲得這一日期的彈幕數(shù)據(jù)包,里面的內(nèi)容目前是看不懂的,之所以確定它為彈幕數(shù)據(jù)包,是因為點擊了日期他才加載出來,且鏈接與前面的鏈接具有相關(guān)性:

          得到的url:

          https://api.bilibili.com/x/v2/dm/web/history/seg.so?type=1&oid=384801460&date=2021-08-08
          

          url中的oid為視頻彈幕鏈接的id值;data參數(shù)為剛才的的日期,而獲得該視頻全部彈幕內(nèi)容,只需要更改data參數(shù)即可。而data參數(shù)可以從上面的彈幕日期url獲得,也可以自行構(gòu)造;網(wǎng)頁數(shù)據(jù)格式為json格式


          實戰(zhàn)代碼

          import requests
          import pandas as pd
          import re
          
          def data_resposen(url):
              headers = {
                  "cookie": "你的cookie",
                  "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36"
              }
              resposen = requests.get(url, headers=headers)
              return resposen
          
          def main(oid, month):
              df = pd.DataFrame()
              url = f'https://api.bilibili.com/x/v2/dm/history/index?type=1&oid={oid}&month={month}'
              list_data = data_resposen(url).json()['data']  # 拿到所有日期
              print(list_data)
              for data in list_data:
                  urls = f'https://api.bilibili.com/x/v2/dm/web/history/seg.so?type=1&oid={oid}&date={data}'
                  text = re.findall(".*?([\u4E00-\u9FA5]+).*?", data_resposen(urls).text)
                  for e in text:
                      print(e)
                      data = pd.DataFrame({'彈幕': [e]})
                      df = pd.concat([df, data])
              df.to_csv('彈幕.csv', encoding='utf-8', index=False, mode='a+')
          
          if __name__ == '__main__':
              oid = '384801460'  # 視頻彈幕鏈接的id值
              month = '2021-08'  # 開始日期
              main(oid, month)
          

          結(jié)果展示:

          評論


          分析網(wǎng)頁

          B站視頻的評論內(nèi)容在網(wǎng)頁下方,進入瀏覽器的開發(fā)者工具后,只需要向下拉取即可加載出數(shù)據(jù)包:

          得到真實url:

          https://api.bilibili.com/x/v2/reply/main?callback=jQuery1720034332372316460136_1629011550479&jsonp=jsonp&next=0&type=1&oid=589656273&mode=3&plat=1&_=1629012090500
          https://api.bilibili.com/x/v2/reply/main?callback=jQuery1720034332372316460136_1629011550483&jsonp=jsonp&next=2&type=1&oid=589656273&mode=3&plat=1&_=1629012513080
          https://api.bilibili.com/x/v2/reply/main?callback=jQuery1720034332372316460136_1629011550484&jsonp=jsonp&next=3&type=1&oid=589656273&mode=3&plat=1&_=1629012803039
          

          兩條urlnext參數(shù),以及_callback參數(shù)。_callback一個是時間戳,一個是干擾參數(shù),刪除即可。next參數(shù)第一條為0,第二條為2,第三條為3,所以第一條next參數(shù)固定為0,第二條開始遞增;網(wǎng)頁數(shù)據(jù)格式為json格式。


          實戰(zhàn)代碼

          import requests
          import pandas as pd
          
          df = pd.DataFrame()
          headers = {
              'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36'}
          try:
              a = 1
              while True:
                  if a == 1:
                   # 刪除不必要參數(shù)得到的第一條url
                      url = f'https://api.bilibili.com/x/v2/reply/main?&jsonp=jsonp&next=0&type=1&oid=589656273&mode=3&plat=1'
                  else:
                      url = f'https://api.bilibili.com/x/v2/reply/main?&jsonp=jsonp&next={a}&type=1&oid=589656273&mode=3&plat=1'
                  print(url)
                  html = requests.get(url, headers=headers).json()
                  for i in html['data']['replies']:
                      uname = i['member']['uname']  # 用戶名稱
                      sex = i['member']['sex']  # 用戶性別
                      mid = i['mid']  # 用戶id
                      current_level = i['member']['level_info']['current_level']  # vip等級
                      message = i['content']['message'].replace('\n', '')  # 用戶評論
                      like = i['like']  # 評論點贊次數(shù)
                      ctime = i['ctime']  # 評論時間
                      data = pd.DataFrame({'用戶名稱': [uname], '用戶性別': [sex], '用戶id': [mid],
                                           'vip等級': [current_level], '用戶評論': [message], '評論點贊次數(shù)': [like],
                                           '評論時間': [ctime]})
                      df = pd.concat([df, data])
                  a += 1
          except Exception as e:
              print(e)
          df.to_csv('奧運會.csv', encoding='utf-8')
          print(df.shape)
          

          結(jié)果展示,獲取的內(nèi)容不包括二級評論,如果需要,可自行爬取,操作步驟差不多:


          愛奇藝

          本文以爬取電影《哥斯拉大戰(zhàn)金剛》為例,講解如何爬愛奇藝視頻的彈幕和評論!

          網(wǎng)頁地址:

          https://www.iqiyi.com/v_19rr0m845o.html
          

          彈幕


          分析網(wǎng)頁

          愛奇藝視頻的彈幕依然是要進入開發(fā)者工具進行抓包,得到一個br壓縮文件,點擊可以直接下載,里面的內(nèi)容是二進制數(shù)據(jù),視頻每播放一分鐘,就加載一條數(shù)據(jù)包:

          得到url,兩條url差別在于遞增的數(shù)字,60為視頻每60秒更新一次數(shù)據(jù)包:

          https://cmts.iqiyi.com/bullet/64/00/1078946400_60_1_b2105043.br
          https://cmts.iqiyi.com/bullet/64/00/1078946400_60_2_b2105043.br
          

          br文件可以用brotli庫進行解壓,但實際操作起來很難,特別是編碼等問題,難以解決;在直接使用utf-8進行解碼時,會報以下錯誤:

          UnicodeDecodeError: 'utf-8' codec can't decode byte 0x91 in position 52: invalid start byte
          

          在解碼中加入ignore,中文不會亂碼,但html格式出現(xiàn)亂碼,數(shù)據(jù)提取依然很難:

          decode("utf-8", "ignore")
          

          小刀被編碼弄到頭疼,如果有興趣的小伙伴可以對上面的內(nèi)容繼續(xù)研究,本文就不在進行深入。所以本文采用另一個方法,對得到url進行修改成以下鏈接而獲得.z壓縮文件:

          https://cmts.iqiyi.com/bullet/64/00/1078946400_300_1.z
          

          之所以如此更改,是因為這是愛奇藝以前的彈幕接口鏈接,他還未刪除或修改,目前還可以使用。該接口鏈接中1078946400是視頻id;300是以前愛奇藝的彈幕每5分鐘會加載出新的彈幕數(shù)據(jù)包,5分鐘就是300秒,《哥斯拉大戰(zhàn)金剛》時長112.59分鐘,除以5向上取整就是23;1是頁數(shù);64為id值的第7為和第8為數(shù)。


          實戰(zhàn)代碼

          import requests
          import pandas as pd
          from lxml import etree
          from zlib import decompress  # 解壓
          
          df = pd.DataFrame()
          for i in range(1, 23):
              url = f'https://cmts.iqiyi.com/bullet/64/00/1078946400_300_{i}.z'
              bulletold = requests.get(url).content  # 得到二進制數(shù)據(jù)
              decode = decompress(bulletold).decode('utf-8')  # 解壓解碼
              with open(f'{i}.html', 'a+', encoding='utf-8') as f:  # 保存為靜態(tài)的html文件
                  f.write(decode)
          
              html = open(f'./{i}.html', 'rb').read()  # 讀取html文件
              html = etree.HTML(html)  # 用xpath語法進行解析網(wǎng)頁
              ul = html.xpath('/html/body/danmu/data/entry/list/bulletinfo')
              for i in ul:
                  contentid = ''.join(i.xpath('./contentid/text()'))
                  content = ''.join(i.xpath('./content/text()'))
                  likeCount = ''.join(i.xpath('./likecount/text()'))
                  print(contentid, content, likeCount)
                  text = pd.DataFrame({'contentid': [contentid], 'content': [content], 'likeCount': [likeCount]})
                  df = pd.concat([df, text])
          df.to_csv('哥斯拉大戰(zhàn)金剛.csv', encoding='utf-8', index=False)
          

          結(jié)果展示:

          評論


          分析網(wǎng)頁

          愛奇藝視頻的評論在網(wǎng)頁下方,依然是動態(tài)加載的內(nèi)容,需要進入瀏覽器的開發(fā)者工具進行抓包,當網(wǎng)頁下拉取時,會加載一條數(shù)據(jù)包,里面包含評論數(shù)據(jù):

          得到的真實url:

          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&authcookie=null&business_type=17&channel_id=1&content_id=1078946400&hot_size=10&last_id=&page=&page_size=10&types=hot,time&callback=jsonp_1629025964363_15405
          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&authcookie=null&business_type=17&channel_id=1&content_id=1078946400&hot_size=0&last_id=7963601726142521&page=&page_size=20&types=time&callback=jsonp_1629026041287_28685
          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&authcookie=null&business_type=17&channel_id=1&content_id=1078946400&hot_size=0&last_id=4933019153543021&page=&page_size=20&types=time&callback=jsonp_1629026394325_81937
          

          第一條url加載的是精彩評論的內(nèi)容,第二條url開始加載的是全部評論的內(nèi)容。經(jīng)過刪減不必要參數(shù)得到以下url:

          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&last_id=&page_size=10
          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&last_id=7963601726142521&page_size=20
          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&last_id=4933019153543021&page_size=20
          

          區(qū)別在于參數(shù)last_idpage_size。page_size在第一條url中的值為10,從第二條url開始固定為20。last_id在首條url中值為空,從第二條開始會不斷發(fā)生變化,經(jīng)過我的研究,last_id的值就是從前一條url中的最后一條評論內(nèi)容的用戶id(應(yīng)該是用戶id);網(wǎng)頁數(shù)據(jù)格式為json格式。


          實戰(zhàn)代碼

          import requests
          import pandas as pd
          import time
          import random
          
          
          headers = {
              'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
          }
          df = pd.DataFrame()
          try:
              a = 0
              while True:
                  if a == 0:
                      url = 'https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&page_size=10'
                  else:
                      # 從id_list中得到上一條頁內(nèi)容中的最后一個id值
                      url = f'https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&last_id={id_list[-1]}&page_size=20'
                  print(url)
                  res = requests.get(url, headers=headers).json()
                  id_list = []  # 建立一個列表保存id值
                  for i in res['data']['comments']:
                      ids = i['id']
                      id_list.append(ids)
                      uname = i['userInfo']['uname']
                      addTime = i['addTime']
                      content = i.get('content', '不存在')  # 用get提取是為了防止鍵值不存在而發(fā)生報錯,第一個參數(shù)為匹配的key值,第二個為缺少時輸出
                      text = pd.DataFrame({'ids': [ids], 'uname': [uname], 'addTime': [addTime], 'content': [content]})
                      df = pd.concat([df, text])
                  a += 1
                  time.sleep(random.uniform(2, 3))
          except Exception as e:
              print(e)
          df.to_csv('哥斯拉大戰(zhàn)金剛_評論.csv', mode='a+', encoding='utf-8', index=False)
          

          結(jié)果展示:


          知乎

          本文以爬取知乎熱點話題《如何看待網(wǎng)傳騰訊實習生向騰訊高層提出建議頒布拒絕陪酒相關(guān)條令?》為例,講解如爬取知乎回答!

          網(wǎng)頁地址:

          https://www.zhihu.com/question/478781972
          


          分析網(wǎng)頁

          經(jīng)過查看網(wǎng)頁源代碼等方式,確定該網(wǎng)頁回答內(nèi)容為動態(tài)加載的,需要進入瀏覽器的開發(fā)者工具進行抓包。進入Noetwork→XHR,用鼠標在網(wǎng)頁向下拉取,得到我們需要的數(shù)據(jù)包:

          得到的真實url:

          https://www.zhihu.com/api/v4/questions/478781972/answers?include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cvip_info%2Cbadge%5B%2A%5D.topics%3Bdata%5B%2A%5D.settings.table_of_content.enabled&limit=5&offset=0&platform=desktop&sort_by=default
          https://www.zhihu.com/api/v4/questions/478781972/answers?include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cvip_info%2Cbadge%5B%2A%5D.topics%3Bdata%5B%2A%5D.settings.table_of_content.enabled&limit=5&offset=5&platform=desktop&sort_by=default
          

          url有很多不必要的參數(shù),大家可以在瀏覽器中自行刪減。兩條url的區(qū)別在于后面的offset參數(shù),首條url的offset參數(shù)為0,第二條為5,offset是以公差為5遞增;網(wǎng)頁數(shù)據(jù)格式為json格式。


          實戰(zhàn)代碼

          import requests
          import pandas as pd
          import re
          import time
          import random
          
          df = pd.DataFrame()
          headers = {
              'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
          }
          for page in range(0, 1360, 5):
              url = f'https://www.zhihu.com/api/v4/questions/478781972/answers?include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cvip_info%2Cbadge%5B%2A%5D.topics%3Bdata%5B%2A%5D.settings.table_of_content.enabled&limit=5&offset={page}&platform=desktop&sort_by=default'
              response = requests.get(url=url, headers=headers).json()
              data = response['data']
              for list_ in data:
                  name = list_['author']['name']  # 知乎作者
                  id_ = list_['author']['id']  # 作者id
                  created_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(list_['created_time'] )) # 回答時間
                  voteup_count = list_['voteup_count']  # 贊同數(shù)
                  comment_count = list_['comment_count']  # 底下評論數(shù)
                  content = list_['content']  # 回答內(nèi)容
                  content = ''.join(re.findall("[\u3002\uff1b\uff0c\uff1a\u201c\u201d\uff08\uff09\u3001\uff1f\u300a\u300b\u4e00-\u9fa5]", content))  # 正則表達式提取
                  print(name, id_, created_time, comment_count, content, sep='|')
                  dataFrame = pd.DataFrame(
                      {'知乎作者': [name], '作者id': [id_], '回答時間': [created_time], '贊同數(shù)': [voteup_count], '底下評論數(shù)': [comment_count],
                       '回答內(nèi)容': [content]})
                  df = pd.concat([df, dataFrame])
              time.sleep(random.uniform(2, 3))
          df.to_csv('知乎回答.csv', encoding='utf-8', index=False)
          print(df.shape)
          

          結(jié)果展示:


          微博

          本文以爬取微博熱搜《霍尊手寫道歉信》為例,講解如何爬取微博評論!

          網(wǎng)頁地址:

          https://m.weibo.cn/detail/4669040301182509
          


          分析網(wǎng)頁

          微博評論是動態(tài)加載的,進入瀏覽器的開發(fā)者工具后,在網(wǎng)頁上向下拉取會得到我們需要的數(shù)據(jù)包:

          得到真實url:

          https://m.weibo.cn/comments/hotflow?id=4669040301182509&mid=4669040301182509&max_id_type=0
          https://m.weibo.cn/comments/hotflow?id=4669040301182509&mid=4669040301182509&max_id=3698934781006193&max_id_type=0

          兩條url區(qū)別很明顯,首條url是沒有參數(shù)max_id的,第二條開始max_id才出現(xiàn),而max_id其實是前一條數(shù)據(jù)包中的max_id:

          但有個需要注意的是參數(shù)max_id_type,它其實也是會變化的,所以我們需要從數(shù)據(jù)包中獲取max_id_type:

          實戰(zhàn)代碼import re
          import requests
          import pandas as pd
          import time
          import random

          df = pd.DataFrame()
          try:
          a = 1
          while True:
          header = {
          'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36'
          }
          resposen = requests.get('https://m.weibo.cn/detail/4669040301182509', headers=header)
          # 微博爬取大概幾十頁會封賬號的,而通過不斷的更新cookies,會讓爬蟲更持久點...
          cookie = [cookie.value for cookie in resposen.cookies] # 用列表推導式生成cookies部件
          headers = {
          # 登錄后的cookie, SUB用登錄后的
          'cookie': f'WEIBOCN_FROM={cookie[3]}; SUB=; _T_WM={cookie[4]}; MLOGIN={cookie[1]}; M_WEIBOCN_PARAMS={cookie[2]}; XSRF-TOKEN={cookie[0]}',
          'referer': 'https://m.weibo.cn/detail/4669040301182509',
          'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36'
          }
          if a == 1:
          url = 'https://m.weibo.cn/comments/hotflow?id=4669040301182509&mid=4669040301182509&max_id_type=0'
          else:
          url = f'https://m.weibo.cn/comments/hotflow?id=4669040301182509&mid=4669040301182509&max_id={max_id}&max_id_type={max_id_type}'

          html = requests.get(url=url, headers=headers).json()
          data = html['data']
          max_id = data['max_id'] # 獲取max_id和max_id_type返回給下一條url
          max_id_type = data['max_id_type']
          for i in data['data']:
          screen_name = i['user']['screen_name']
          i_d = i['user']['id']
          like_count = i['like_count'] # 點贊數(shù)
          created_at = i['created_at'] # 時間
          text = re.sub(r'<[^>]*>', '', i['text']) # 評論
          print(text)
          data_json = pd.DataFrame({'screen_name': [screen_name], 'i_d': [i_d], 'like_count': [like_count], 'created_at': [created_at],'text': [text]})
          df = pd.concat([df, data_json])
          time.sleep(random.uniform(2, 7))
          a += 1
          except Exception as e:
          print(e)

          df.to_csv('微博.csv', encoding='utf-8', mode='a+', index=False)
          print(df.shape)

          結(jié)果展示:

          以上便是今天的全部內(nèi)容了,如果你喜歡今天的內(nèi)容,希望你能在下方點個贊和在看支持我,謝謝!



          者:Panda Shen

          轉(zhuǎn)發(fā)鏈接:https://www.overtaking.top/2018/06/21/20180621113025/


          主站蜘蛛池模板: 无码人妻精品一区二区蜜桃百度| 免费在线视频一区| 一区二区三区视频网站| 久久精品视频一区| 久久久久人妻一区精品 | 国产一区美女视频| 国产精品一区二区久久| 久久99精品国产一区二区三区| 国产精品亚洲一区二区三区久久| 日本一区二区在线播放| 亚洲爆乳精品无码一区二区三区| 一区二区三区www| 日本丰满少妇一区二区三区 | 一区二区三区四区精品| 视频在线观看一区二区三区| 无码人妻一区二区三区兔费 | 亚洲国产精品成人一区| 日本中文字幕在线视频一区| 波多野结衣中文一区| 日韩福利视频一区| 黑人一区二区三区中文字幕| 国产产一区二区三区久久毛片国语| 精品无码国产一区二区三区51安| 亚洲日韩国产一区二区三区在线 | 无码一区二区三区亚洲人妻| 无码国产精品一区二区高潮| 国产萌白酱在线一区二区| 国产综合无码一区二区色蜜蜜| 国产成人一区二区三区高清| 国产在线一区二区杨幂| 内射少妇一区27P| 亚洲一区二区三区在线视频| 亚洲一本一道一区二区三区| 无码人妻精品一区二区蜜桃网站 | 国产大秀视频一区二区三区| 在线成人综合色一区| 国产一区二区三区在线电影| 无码精品蜜桃一区二区三区WW | 区三区激情福利综合中文字幕在线一区亚洲视频1 | 区三区激情福利综合中文字幕在线一区| 激情爆乳一区二区三区|