整合營銷服務商

          電腦端+手機端+微信端=數據同步管理

          免費咨詢熱線:

          用Python爬取六大平臺的彈幕、評論,看這一篇就夠了

          天講解如何用python爬取芒果TV、騰訊視頻、B站、愛奇藝、知乎、微博這幾個常見常用的影視、輿論平臺的彈幕和評論,這類爬蟲得到的結果一般用于娛樂、輿情分析,如:新出一部火爆的電影,爬取彈幕評論分析他為什么這么火;微博又出大瓜,爬取底下評論看看網友怎么說,等等這娛樂性分析。

          本文爬取一共六個平臺,十個爬蟲案例,如果只對個別案例感興趣的可以根據:芒果TV、騰訊視頻、B站、愛奇藝、知乎、微博這一順序進行拉取觀看。完整的實戰源碼已在文中,我們廢話不多說,下面開始操作!

          芒果TV

          本文以爬取電影《懸崖之上》為例,講解如何爬取芒果TV視頻的彈幕和評論!

          網頁地址:

          https://www.mgtv.com/b/335313/12281642.html?fpa=15800&fpos=8&lastp=ch_movie
          


          彈幕


          分析網頁

          彈幕數據所在的文件是動態加載的,需要進入瀏覽器的開發者工具進行抓包,得到彈幕數據所在的真實url。當視頻播放一分鐘它就會更新一個json數據包,里面包含我們需要的彈幕數據。

          得到的真實url:

          https://bullet-ali.hitv.com/bullet/2021/08/14/005323/12281642/0.json
          https://bullet-ali.hitv.com/bullet/2021/08/14/005323/12281642/1.json
          

          可以發現,每條url的差別在于后面的數字,首條url為0,后面的逐步遞增。視頻一共120:20分鐘,向上取整,也就是121條數據包。


          實戰代碼

          import requests
          import pandas as pd
          
          headers = {
              'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
          }
          df = pd.DataFrame()
          for e in range(0, 121):
              print(f'正在爬取第{e}頁')
              resposen = requests.get(f'https://bullet-ali.hitv.com/bullet/2021/08/3/004902/12281642/{e}.json', headers=headers)
              # 直接用json提取數據
              for i in resposen.json()['data']['items']:
                  ids = i['ids']  # 用戶id
                  content = i['content']  # 彈幕內容
                  time = i['time']  # 彈幕發生時間
                  # 有些文件中不存在點贊數
                  try:  
                      v2_up_count = i['v2_up_count']
                  except:
                      v2_up_count = ''
                  text = pd.DataFrame({'ids': [ids], '彈幕': [content], '發生時間': [time]})
                  df = pd.concat([df, text])
          df.to_csv('懸崖之上.csv', encoding='utf-8', index=False)
          

          結果展示:

          評論


          分析網頁

          芒果TV視頻的評論需要拉取到網頁下面進行查看。評論數據所在的文件依然是動態加載的,進入開發者工具,按下列步驟進行抓包:Network→js,最后點擊查看更多評論。

          加載出來的依然是js文件,里面包含評論數據。得到的真實url:

          https://comment.mgtv.com/v4/comment/getCommentList?page=1&subjectType=hunantv2014&subjectId=12281642&callback=jQuery1820749973529821774_1628942431449&_support=10000000&_=1628943290494
          https://comment.mgtv.com/v4/comment/getCommentList?page=2&subjectType=hunantv2014&subjectId=12281642&callback=jQuery1820749973529821774_1628942431449&_support=10000000&_=1628943296653
          

          其中有差別的參數有page_,page是頁數,_是時間戳;url中的時間戳刪除后不影響數據完整性,但里面的callback參數會干擾數據解析,所以進行刪除。最后得到url:

          https://comment.mgtv.com/v4/comment/getCommentList?page=1&subjectType=hunantv2014&subjectId=12281642&_support=10000000
          

          數據包中每頁包含15條評論數據,評論總數是2527,得到最大頁為169。


          實戰代碼

          import requests
          import pandas as pd
          
          headers = {
              'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
          }
          df = pd.DataFrame()
          for o in range(1, 170):
              url = f'https://comment.mgtv.com/v4/comment/getCommentList?page={o}&subjectType=hunantv2014&subjectId=12281642&_support=10000000'
              res = requests.get(url, headers=headers).json()
              for i in res['data']['list']:
                  nickName = i['user']['nickName']  # 用戶昵稱
                  praiseNum = i['praiseNum']  # 被點贊數
                  date = i['date']  # 發送日期
                  content = i['content']  # 評論內容
                  text = pd.DataFrame({'nickName': [nickName], 'praiseNum': [praiseNum], 'date': [date], 'content': [content]})
                  df = pd.concat([df, text])
          df.to_csv('懸崖之上.csv', encoding='utf-8', index=False)
          

          結果展示:


          騰訊視頻

          本文以爬取電影《革命者》為例,講解如何爬取騰訊視頻的彈幕和評論!

          網頁地址:

          https://v.qq.com/x/cover/mzc00200m72fcup.html
          

          彈幕


          分析網頁

          依然進入瀏覽器的開發者工具進行抓包,當視頻播放30秒它就會更新一個json數據包,里面包含我們需要的彈幕數據。

          得到真實url:

          https://mfm.video.qq.com/danmu?otype=json&callback=jQuery19109541041335587612_1628947050538&target_id=7220956568%26vid%3Dt0040z3o3la&session_key=0%2C32%2C1628947057×tamp=15&_=1628947050569
          https://mfm.video.qq.com/danmu?otype=json&callback=jQuery19109541041335587612_1628947050538&target_id=7220956568%26vid%3Dt0040z3o3la&session_key=0%2C32%2C1628947057×tamp=45&_=1628947050572
          

          其中有差別的參數有timestamp_。_是時間戳。timestamp是頁數,首條url為15,后面以公差為30遞增,公差是以數據包更新時長為基準,而最大頁數為視頻時長7245秒。依然刪除不必要參數,得到url:

          https://mfm.video.qq.com/danmu?otype=json&target_id=7220956568%26vid%3Dt0040z3o3la&session_key=0%2C18%2C1628418094×tamp=15&_=1628418086509
          


          實戰代碼

          import pandas as pd
          import time
          import requests
          
          headers = {
              'User-Agent': 'Googlebot'
          }
          # 初始為15,7245 為視頻秒長,鏈接以三十秒遞增
          df = pd.DataFrame()
          for i in range(15, 7245, 30):
              url = "https://mfm.video.qq.com/danmu?otype=json&target_id=7220956568%26vid%3Dt0040z3o3la&session_key=0%2C18%2C1628418094×tamp={}&_=1628418086509".format(i)
              html = requests.get(url, headers=headers).json()
              time.sleep(1)
              for i in html['comments']:
                  content = i['content']
                  print(content)
                  text = pd.DataFrame({'彈幕': [content]})
                  df = pd.concat([df, text])
          df.to_csv('革命者_彈幕.csv', encoding='utf-8', index=False)
          

          結果展示:

          評論


          分析網頁

          騰訊視頻評論數據在網頁底部,依然是動態加載的,需要按下列步驟進入開發者工具進行抓包:

          點擊查看更多評論后,得到的數據包含有我們需要的評論數據,得到的真實url:

          https://video.coral.qq.com/varticle/6655100451/comment/v2?callback=_varticle6655100451commentv2&orinum=10&oriorder=o&pageflag=1&cursor=0&scorecursor=0&orirepnum=2&reporder=o&reppageflag=1&source=132&_=1628948867522
          https://video.coral.qq.com/varticle/6655100451/comment/v2?callback=_varticle6655100451commentv2&orinum=10&oriorder=o&pageflag=1&cursor=6786869637356389636&scorecursor=0&orirepnum=2&reporder=o&reppageflag=1&source=132&_=1628948867523

          url中的參數callback以及_刪除即可。重要的是參數cursor,第一條url參數cursor是等于0的,第二條url才出現,所以要查找cursor參數是怎么出現的。經過我的觀察,cursor參數其實是上一條url的last參數:


          實戰代碼

          import requests
          import pandas as pd
          import time
          import random
          
          headers = {
              'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
          }
          df = pd.DataFrame()
          a = 1
          # 此處必須設定循環次數,否則會無限重復爬取
          # 281為參照數據包中的oritotal,數據包中一共10條數據,循環280次得到2800條數據,但不包括底下回復的評論
          # 數據包中的commentnum,是包括回復的評論數據的總數,而數據包都包含10條評論數據和底下的回復的評論數據,所以只需要把2800除以10取整數+1即可!
          while a < 281:
              if a == 1:
                  url = 'https://video.coral.qq.com/varticle/6655100451/comment/v2?orinum=10&oriorder=o&pageflag=1&cursor=0&scorecursor=0&orirepnum=2&reporder=o&reppageflag=1&source=132'
              else:
                  url = f'https://video.coral.qq.com/varticle/6655100451/comment/v2?orinum=10&oriorder=o&pageflag=1&cursor={cursor}&scorecursor=0&orirepnum=2&reporder=o&reppageflag=1&source=132'
              res = requests.get(url, headers=headers).json()
              cursor = res['data']['last']
              for i in res['data']['oriCommList']:
                  ids = i['id']
                  times = i['time']
                  up = i['up']
                  content = i['content'].replace('\n', '')
                  text = pd.DataFrame({'ids': [ids], 'times': [times], 'up': [up], 'content': [content]})
                  df = pd.concat([df, text])
              a += 1
              time.sleep(random.uniform(2, 3))
              df.to_csv('革命者_評論.csv', encoding='utf-8', index=False)
          

          效果展示:


          B站

          本文以爬取視頻《“ 這是我見過最拽的一屆中國隊奧運冠軍”》為例,講解如何爬取B站視頻的彈幕和評論!

          網頁地址:

          https://www.bilibili.com/video/BV1wq4y1Q7dp
          

          彈幕


          分析網頁

          B站視頻的彈幕不像騰訊視頻那樣,播放視頻就會觸發彈幕數據包,他需要點擊網頁右側的彈幕列表行的展開,然后點擊查看歷史彈幕獲得視頻彈幕開始日到截至日鏈接:

          鏈接末尾以oid以及開始日期來構成彈幕日期url:

          https://api.bilibili.com/x/v2/dm/history/index?type=1&oid=384801460&month=2021-08

          在上面的的基礎之上,點擊任一有效日期即可獲得這一日期的彈幕數據包,里面的內容目前是看不懂的,之所以確定它為彈幕數據包,是因為點擊了日期他才加載出來,且鏈接與前面的鏈接具有相關性:

          得到的url:

          https://api.bilibili.com/x/v2/dm/web/history/seg.so?type=1&oid=384801460&date=2021-08-08
          

          url中的oid為視頻彈幕鏈接的id值;data參數為剛才的的日期,而獲得該視頻全部彈幕內容,只需要更改data參數即可。而data參數可以從上面的彈幕日期url獲得,也可以自行構造;網頁數據格式為json格式


          實戰代碼

          import requests
          import pandas as pd
          import re
          
          def data_resposen(url):
              headers = {
                  "cookie": "你的cookie",
                  "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36"
              }
              resposen = requests.get(url, headers=headers)
              return resposen
          
          def main(oid, month):
              df = pd.DataFrame()
              url = f'https://api.bilibili.com/x/v2/dm/history/index?type=1&oid={oid}&month={month}'
              list_data = data_resposen(url).json()['data']  # 拿到所有日期
              print(list_data)
              for data in list_data:
                  urls = f'https://api.bilibili.com/x/v2/dm/web/history/seg.so?type=1&oid={oid}&date={data}'
                  text = re.findall(".*?([\u4E00-\u9FA5]+).*?", data_resposen(urls).text)
                  for e in text:
                      print(e)
                      data = pd.DataFrame({'彈幕': [e]})
                      df = pd.concat([df, data])
              df.to_csv('彈幕.csv', encoding='utf-8', index=False, mode='a+')
          
          if __name__ == '__main__':
              oid = '384801460'  # 視頻彈幕鏈接的id值
              month = '2021-08'  # 開始日期
              main(oid, month)
          

          結果展示:

          評論


          分析網頁

          B站視頻的評論內容在網頁下方,進入瀏覽器的開發者工具后,只需要向下拉取即可加載出數據包:

          得到真實url:

          https://api.bilibili.com/x/v2/reply/main?callback=jQuery1720034332372316460136_1629011550479&jsonp=jsonp&next=0&type=1&oid=589656273&mode=3&plat=1&_=1629012090500
          https://api.bilibili.com/x/v2/reply/main?callback=jQuery1720034332372316460136_1629011550483&jsonp=jsonp&next=2&type=1&oid=589656273&mode=3&plat=1&_=1629012513080
          https://api.bilibili.com/x/v2/reply/main?callback=jQuery1720034332372316460136_1629011550484&jsonp=jsonp&next=3&type=1&oid=589656273&mode=3&plat=1&_=1629012803039
          

          兩條urlnext參數,以及_callback參數。_callback一個是時間戳,一個是干擾參數,刪除即可。next參數第一條為0,第二條為2,第三條為3,所以第一條next參數固定為0,第二條開始遞增;網頁數據格式為json格式。


          實戰代碼

          import requests
          import pandas as pd
          
          df = pd.DataFrame()
          headers = {
              'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36'}
          try:
              a = 1
              while True:
                  if a == 1:
                   # 刪除不必要參數得到的第一條url
                      url = f'https://api.bilibili.com/x/v2/reply/main?&jsonp=jsonp&next=0&type=1&oid=589656273&mode=3&plat=1'
                  else:
                      url = f'https://api.bilibili.com/x/v2/reply/main?&jsonp=jsonp&next={a}&type=1&oid=589656273&mode=3&plat=1'
                  print(url)
                  html = requests.get(url, headers=headers).json()
                  for i in html['data']['replies']:
                      uname = i['member']['uname']  # 用戶名稱
                      sex = i['member']['sex']  # 用戶性別
                      mid = i['mid']  # 用戶id
                      current_level = i['member']['level_info']['current_level']  # vip等級
                      message = i['content']['message'].replace('\n', '')  # 用戶評論
                      like = i['like']  # 評論點贊次數
                      ctime = i['ctime']  # 評論時間
                      data = pd.DataFrame({'用戶名稱': [uname], '用戶性別': [sex], '用戶id': [mid],
                                           'vip等級': [current_level], '用戶評論': [message], '評論點贊次數': [like],
                                           '評論時間': [ctime]})
                      df = pd.concat([df, data])
                  a += 1
          except Exception as e:
              print(e)
          df.to_csv('奧運會.csv', encoding='utf-8')
          print(df.shape)
          

          結果展示,獲取的內容不包括二級評論,如果需要,可自行爬取,操作步驟差不多:


          愛奇藝

          本文以爬取電影《哥斯拉大戰金剛》為例,講解如何爬愛奇藝視頻的彈幕和評論!

          網頁地址:

          https://www.iqiyi.com/v_19rr0m845o.html
          

          彈幕


          分析網頁

          愛奇藝視頻的彈幕依然是要進入開發者工具進行抓包,得到一個br壓縮文件,點擊可以直接下載,里面的內容是二進制數據,視頻每播放一分鐘,就加載一條數據包:

          得到url,兩條url差別在于遞增的數字,60為視頻每60秒更新一次數據包:

          https://cmts.iqiyi.com/bullet/64/00/1078946400_60_1_b2105043.br
          https://cmts.iqiyi.com/bullet/64/00/1078946400_60_2_b2105043.br
          

          br文件可以用brotli庫進行解壓,但實際操作起來很難,特別是編碼等問題,難以解決;在直接使用utf-8進行解碼時,會報以下錯誤:

          UnicodeDecodeError: 'utf-8' codec can't decode byte 0x91 in position 52: invalid start byte
          

          在解碼中加入ignore,中文不會亂碼,但html格式出現亂碼,數據提取依然很難:

          decode("utf-8", "ignore")
          

          小刀被編碼弄到頭疼,如果有興趣的小伙伴可以對上面的內容繼續研究,本文就不在進行深入。所以本文采用另一個方法,對得到url進行修改成以下鏈接而獲得.z壓縮文件:

          https://cmts.iqiyi.com/bullet/64/00/1078946400_300_1.z
          

          之所以如此更改,是因為這是愛奇藝以前的彈幕接口鏈接,他還未刪除或修改,目前還可以使用。該接口鏈接中1078946400是視頻id;300是以前愛奇藝的彈幕每5分鐘會加載出新的彈幕數據包,5分鐘就是300秒,《哥斯拉大戰金剛》時長112.59分鐘,除以5向上取整就是23;1是頁數;64為id值的第7為和第8為數。


          實戰代碼

          import requests
          import pandas as pd
          from lxml import etree
          from zlib import decompress  # 解壓
          
          df = pd.DataFrame()
          for i in range(1, 23):
              url = f'https://cmts.iqiyi.com/bullet/64/00/1078946400_300_{i}.z'
              bulletold = requests.get(url).content  # 得到二進制數據
              decode = decompress(bulletold).decode('utf-8')  # 解壓解碼
              with open(f'{i}.html', 'a+', encoding='utf-8') as f:  # 保存為靜態的html文件
                  f.write(decode)
          
              html = open(f'./{i}.html', 'rb').read()  # 讀取html文件
              html = etree.HTML(html)  # 用xpath語法進行解析網頁
              ul = html.xpath('/html/body/danmu/data/entry/list/bulletinfo')
              for i in ul:
                  contentid = ''.join(i.xpath('./contentid/text()'))
                  content = ''.join(i.xpath('./content/text()'))
                  likeCount = ''.join(i.xpath('./likecount/text()'))
                  print(contentid, content, likeCount)
                  text = pd.DataFrame({'contentid': [contentid], 'content': [content], 'likeCount': [likeCount]})
                  df = pd.concat([df, text])
          df.to_csv('哥斯拉大戰金剛.csv', encoding='utf-8', index=False)
          

          結果展示:

          評論


          分析網頁

          愛奇藝視頻的評論在網頁下方,依然是動態加載的內容,需要進入瀏覽器的開發者工具進行抓包,當網頁下拉取時,會加載一條數據包,里面包含評論數據:

          得到的真實url:

          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&authcookie=null&business_type=17&channel_id=1&content_id=1078946400&hot_size=10&last_id=&page=&page_size=10&types=hot,time&callback=jsonp_1629025964363_15405
          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&authcookie=null&business_type=17&channel_id=1&content_id=1078946400&hot_size=0&last_id=7963601726142521&page=&page_size=20&types=time&callback=jsonp_1629026041287_28685
          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&authcookie=null&business_type=17&channel_id=1&content_id=1078946400&hot_size=0&last_id=4933019153543021&page=&page_size=20&types=time&callback=jsonp_1629026394325_81937
          

          第一條url加載的是精彩評論的內容,第二條url開始加載的是全部評論的內容。經過刪減不必要參數得到以下url:

          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&last_id=&page_size=10
          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&last_id=7963601726142521&page_size=20
          https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&last_id=4933019153543021&page_size=20
          

          區別在于參數last_idpage_size。page_size在第一條url中的值為10,從第二條url開始固定為20。last_id在首條url中值為空,從第二條開始會不斷發生變化,經過我的研究,last_id的值就是從前一條url中的最后一條評論內容的用戶id(應該是用戶id);網頁數據格式為json格式。


          實戰代碼

          import requests
          import pandas as pd
          import time
          import random
          
          
          headers = {
              'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
          }
          df = pd.DataFrame()
          try:
              a = 0
              while True:
                  if a == 0:
                      url = 'https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&page_size=10'
                  else:
                      # 從id_list中得到上一條頁內容中的最后一個id值
                      url = f'https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=1078946400&last_id={id_list[-1]}&page_size=20'
                  print(url)
                  res = requests.get(url, headers=headers).json()
                  id_list = []  # 建立一個列表保存id值
                  for i in res['data']['comments']:
                      ids = i['id']
                      id_list.append(ids)
                      uname = i['userInfo']['uname']
                      addTime = i['addTime']
                      content = i.get('content', '不存在')  # 用get提取是為了防止鍵值不存在而發生報錯,第一個參數為匹配的key值,第二個為缺少時輸出
                      text = pd.DataFrame({'ids': [ids], 'uname': [uname], 'addTime': [addTime], 'content': [content]})
                      df = pd.concat([df, text])
                  a += 1
                  time.sleep(random.uniform(2, 3))
          except Exception as e:
              print(e)
          df.to_csv('哥斯拉大戰金剛_評論.csv', mode='a+', encoding='utf-8', index=False)
          

          結果展示:


          知乎

          本文以爬取知乎熱點話題《如何看待網傳騰訊實習生向騰訊高層提出建議頒布拒絕陪酒相關條令?》為例,講解如爬取知乎回答!

          網頁地址:

          https://www.zhihu.com/question/478781972
          


          分析網頁

          經過查看網頁源代碼等方式,確定該網頁回答內容為動態加載的,需要進入瀏覽器的開發者工具進行抓包。進入Noetwork→XHR,用鼠標在網頁向下拉取,得到我們需要的數據包:

          得到的真實url:

          https://www.zhihu.com/api/v4/questions/478781972/answers?include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cvip_info%2Cbadge%5B%2A%5D.topics%3Bdata%5B%2A%5D.settings.table_of_content.enabled&limit=5&offset=0&platform=desktop&sort_by=default
          https://www.zhihu.com/api/v4/questions/478781972/answers?include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cvip_info%2Cbadge%5B%2A%5D.topics%3Bdata%5B%2A%5D.settings.table_of_content.enabled&limit=5&offset=5&platform=desktop&sort_by=default
          

          url有很多不必要的參數,大家可以在瀏覽器中自行刪減。兩條url的區別在于后面的offset參數,首條url的offset參數為0,第二條為5,offset是以公差為5遞增;網頁數據格式為json格式。


          實戰代碼

          import requests
          import pandas as pd
          import re
          import time
          import random
          
          df = pd.DataFrame()
          headers = {
              'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
          }
          for page in range(0, 1360, 5):
              url = f'https://www.zhihu.com/api/v4/questions/478781972/answers?include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cvip_info%2Cbadge%5B%2A%5D.topics%3Bdata%5B%2A%5D.settings.table_of_content.enabled&limit=5&offset={page}&platform=desktop&sort_by=default'
              response = requests.get(url=url, headers=headers).json()
              data = response['data']
              for list_ in data:
                  name = list_['author']['name']  # 知乎作者
                  id_ = list_['author']['id']  # 作者id
                  created_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(list_['created_time'] )) # 回答時間
                  voteup_count = list_['voteup_count']  # 贊同數
                  comment_count = list_['comment_count']  # 底下評論數
                  content = list_['content']  # 回答內容
                  content = ''.join(re.findall("[\u3002\uff1b\uff0c\uff1a\u201c\u201d\uff08\uff09\u3001\uff1f\u300a\u300b\u4e00-\u9fa5]", content))  # 正則表達式提取
                  print(name, id_, created_time, comment_count, content, sep='|')
                  dataFrame = pd.DataFrame(
                      {'知乎作者': [name], '作者id': [id_], '回答時間': [created_time], '贊同數': [voteup_count], '底下評論數': [comment_count],
                       '回答內容': [content]})
                  df = pd.concat([df, dataFrame])
              time.sleep(random.uniform(2, 3))
          df.to_csv('知乎回答.csv', encoding='utf-8', index=False)
          print(df.shape)
          

          結果展示:


          微博

          本文以爬取微博熱搜《霍尊手寫道歉信》為例,講解如何爬取微博評論!

          網頁地址:

          https://m.weibo.cn/detail/4669040301182509
          


          分析網頁

          微博評論是動態加載的,進入瀏覽器的開發者工具后,在網頁上向下拉取會得到我們需要的數據包:

          得到真實url:

          https://m.weibo.cn/comments/hotflow?id=4669040301182509&mid=4669040301182509&max_id_type=0
          https://m.weibo.cn/comments/hotflow?id=4669040301182509&mid=4669040301182509&max_id=3698934781006193&max_id_type=0

          兩條url區別很明顯,首條url是沒有參數max_id的,第二條開始max_id才出現,而max_id其實是前一條數據包中的max_id:

          但有個需要注意的是參數max_id_type,它其實也是會變化的,所以我們需要從數據包中獲取max_id_type:

          實戰代碼import re
          import requests
          import pandas as pd
          import time
          import random

          df = pd.DataFrame()
          try:
          a = 1
          while True:
          header = {
          'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36'
          }
          resposen = requests.get('https://m.weibo.cn/detail/4669040301182509', headers=header)
          # 微博爬取大概幾十頁會封賬號的,而通過不斷的更新cookies,會讓爬蟲更持久點...
          cookie = [cookie.value for cookie in resposen.cookies] # 用列表推導式生成cookies部件
          headers = {
          # 登錄后的cookie, SUB用登錄后的
          'cookie': f'WEIBOCN_FROM={cookie[3]}; SUB=; _T_WM={cookie[4]}; MLOGIN={cookie[1]}; M_WEIBOCN_PARAMS={cookie[2]}; XSRF-TOKEN={cookie[0]}',
          'referer': 'https://m.weibo.cn/detail/4669040301182509',
          'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36'
          }
          if a == 1:
          url = 'https://m.weibo.cn/comments/hotflow?id=4669040301182509&mid=4669040301182509&max_id_type=0'
          else:
          url = f'https://m.weibo.cn/comments/hotflow?id=4669040301182509&mid=4669040301182509&max_id={max_id}&max_id_type={max_id_type}'

          html = requests.get(url=url, headers=headers).json()
          data = html['data']
          max_id = data['max_id'] # 獲取max_id和max_id_type返回給下一條url
          max_id_type = data['max_id_type']
          for i in data['data']:
          screen_name = i['user']['screen_name']
          i_d = i['user']['id']
          like_count = i['like_count'] # 點贊數
          created_at = i['created_at'] # 時間
          text = re.sub(r'<[^>]*>', '', i['text']) # 評論
          print(text)
          data_json = pd.DataFrame({'screen_name': [screen_name], 'i_d': [i_d], 'like_count': [like_count], 'created_at': [created_at],'text': [text]})
          df = pd.concat([df, data_json])
          time.sleep(random.uniform(2, 7))
          a += 1
          except Exception as e:
          print(e)

          df.to_csv('微博.csv', encoding='utf-8', mode='a+', index=False)
          print(df.shape)

          結果展示:

          以上便是今天的全部內容了,如果你喜歡今天的內容,希望你能在下方點個贊和在看支持我,謝謝!

          教云刷評論小豬手是一款自動課程評論工具,該軟件只需要用戶登錄賬號密碼就能夠幫助你按照你選定的課程來自動進行評論,有需要的用戶不要錯過了,快來下載使用吧!

          http://www.downxia.com/downinfo/294763.html

          TML: HyperText Markup Language 超文本標記語言

          HTML代碼不區分大小寫, 包括HTML標記、屬性、屬性值都不區分大小寫;

          任何空格或回車鍵在代碼中都無效,插入空格或回車有專用的標記,分別是 、<br>

          HTML標記中不要有空格,否則瀏覽器可能無法識別。

          如何添加注釋(comment:評論;注釋)

          <!-- -->
          <comment></comment>
          <!-- --> 不能留有空格


          字符集

          <meta http-equiv="Content-Type" content="text/html;charset=#"/>


          <base target="_blank">

          可以將a鏈接的默認屬性設置為_blank屬性

          單個標簽要有最好有結束符(可以沒有結束符)

          <br/> <img src="" width="" /> 

          便于兼容XHTML(XHTML必須要有結束符)

          HTML標簽的屬性值可以有引號,可以沒有引號,為了提高代碼的可讀性,推薦使用引號(單引號和雙引號),盡管屬性值是整數,也推薦加上引號。

          <marquee behavior="slide"></marquee> 

          便于兼容XHTML(XHTML必須要有引號)

          <marquee behavior=slide></marquee>

          經過測試,以上程序都可以正確運行


          HTML標簽涉及到的顏色值格式:

          color_name 規定顏色值為顏色名稱的文本顏色(比如 "red")。

          hex_number 規定顏色值為十六進制值的文本顏色(比如 "#ff0000")。

          rgb_number 規定顏色值為 rgb 代碼的文本顏色(比如 "rgb(255,0,0)")。

          transparent 透明色 color:transparent

          rgba(紅0-255,綠0-255,藍0-255,透明度0-1)

          opacity屬性: 就是葫蘆娃兄弟老六(技能包隱身)

          css:

          div{opacity:0.1} /*取值為0-1*/

          英文(顏色值)不區分大小寫

          HTML中顏色值:采用十六進制兼容性最好(十六進制顯示顏色效果最佳)

          CSS中顏色值:不存在兼容性

          紅色 #FF0000

          綠色 #00FF00

          藍色 #0000FF

          黑色: #000000

          灰色 #CCCCCC

          白色 #FFFFFF

          青色 #00FFFF

          洋紅 #FF00FF

          黃色 #FFFF00


          請問后綴 html 和 htm 有什么區別?

          答: 1. 如果一個網站有 index.html和index.htm,默認情況下,優先訪問.html

          2. htm后綴是為了兼容以前的DOS系統8.3的命名規范

          XHTML與HTML之間的關系?

          XHTML是EXtensible HyperText Markup Language的英文縮寫,即可擴展的超文本標記語言.

          XHTML語言是一種標記語言,它不需要編譯,可以直接由瀏覽器執行.

          XHTML是用來代替HTML的, 是2000年w3c公布發行的.

          XHTML是一種增強了的HTML,它的可擴展性和靈活性將適應未來網絡應用更多的需求.

          XHTML是基于XML的應用.

          XHTML更簡潔更嚴謹.

          XHTML也可以說就是HTML一個升級版本.(w3c描述它為'HTML 4.01')

          XHTML是大小寫敏感的,XHTML與HTML是不一樣的;HTML不區分大小寫,標準的XHTML標簽應該使用小寫.

          XHTML屬性值必須使用引號,而HTML屬性值可用引號,可不要引號

          XHTML屬性不能簡寫:如checked必須寫成checked="checked"

          單標記<br>, XHTML必須有結束符<br/>,而HTML可以使用<br>,也可以使用<br/>

          除此之外XHTML和HTML基本相同.


          網頁寬度設置多少為最佳?

          960px


          target屬性值理解

          _self 在當前窗口中打開鏈接文件,是默認值

          _blank 開啟一個新的窗口打開鏈接文件

          _parent 在父級窗口中打開文件,常用于框架頁面

          _top 在頂層窗口中打開文件,常用語框架頁面


          字符集:

          charset=utf-8

          Gb2312 簡單中文字符集, 最常用的中文字符

          Gbk 簡繁體字符集, 中文字符集

          Big5 繁體字符集, 臺灣等等

          Utf-8 世界性語言的字符集

          ANSI編碼格式編碼格式的擴展字符集有gb2312和gbk

          單位問題:

          HTML屬性值數值型的一般不帶單位, CSS必須帶單位;


          強制刷新

          ctrl+F5


          主站蜘蛛池模板: 亚洲AV无码一区二区大桥未久| 色窝窝无码一区二区三区成人网站| 国产无吗一区二区三区在线欢| 亚洲日韩一区二区一无码| 中文乱码人妻系列一区二区 | 精品久久久久久无码中文字幕一区| 国产福利微拍精品一区二区 | 国内精品无码一区二区三区| 国产福利电影一区二区三区| 日韩精品人妻一区二区中文八零 | 午夜影视日本亚洲欧洲精品一区| 久久精品无码一区二区无码| 无码人妻精品一区二区| 毛片一区二区三区| 日韩精品免费一区二区三区| 亚洲性日韩精品国产一区二区| 一区二区三区美女视频| 红桃AV一区二区三区在线无码AV| 日韩综合无码一区二区| 国产精品xxxx国产喷水亚洲国产精品无码久久一区 | 中文字幕一区二区三区在线播放 | 国产福利一区二区三区在线视频| 高清精品一区二区三区一区| 国产一区二区福利| 加勒比无码一区二区三区| 天天爽夜夜爽人人爽一区二区| 亚洲国产精品一区二区成人片国内 | 波霸影院一区二区| 韩国福利影视一区二区三区| 能在线观看的一区二区三区| 人体内射精一区二区三区| 国产日韩精品一区二区在线观看 | 国产成人av一区二区三区在线| 国产丝袜无码一区二区三区视频| 精品一区二区三区波多野结衣| 夜精品a一区二区三区| 久久精品国产一区二区| 国产天堂在线一区二区三区 | 中文字幕一区二区三区精华液| 在线播放偷拍一区精品| 在线中文字幕一区|