整合營銷服務商

          電腦端+手機端+微信端=數據同步管理

          免費咨詢熱線:

          生存分析在線工具2020年4月吐血整理

          生存分析在線工具2020年4月吐血整理

          的生存分析在線工具不斷更新的同時,新的工具不斷涌現,真是讓人應接不暇。今天在這將現有的這些工具做一個綜合整理。關于在線分析軟件相關文獻的發表期刊和年份我分別用紅色和黑色加粗字體標記了,在選擇相應工作的時候可以作為參考。加了的是網頁使用比較順暢的。


          01:Kaplan Meier-plotter

          網址:http://kmplot.com/analysis/index.php?p=background

          簡介

          The Kaplan Meier plotter is capable to assess the effect of 54k genes on survival in 21 cancer types. The largest datasets include breast (n=6,234), ovarian (n=2,190), lung (n=3,452), and gastric (n=1,440) cancer. The miRNA subsystems include 11k samples from 20 different cancer types. The system includes gene chip and RNA-seq data - sources for the databases include GEO, EGA, and TCGA. Primary purpose of the tool is a meta-analysis based discovery and validation of survival biomarkers.

          使用者點評

          這個網頁提供的內置的乳腺癌、卵巢癌、肺癌、肝癌、胃癌數據庫,不能選擇TCGA特定的數據庫。而且分析的多是Microarray而不是主流的RNAseq數據,所以看一眼就行了,不是一個主流的網站。(感覺是做測序的瞧不起做芯片的)

          相關論文

          1. Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer, PLoS One (IF=2.776), 2013 Dec 18;8(12):e82241. doi: 10.1371/journal.pone.0082241. 閱讀此文

          2. Nagy A, Lánczky A, Menyhárt O, Gy?rffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets,?Scientific Reports (IF=4.011), 2018;8:9227 閱讀此文


          02:PROGgene

          網址:http://genomics.jefferson.edu/proggene/

          簡介

          PROGgene - Pan Cancer Prognostics Database。與其它軟件不同的是這個工具提供了基因表達水平比值的預后分析。不過,應該和Normalized by gene(例如GEPIA2)的功能一樣的效果。


          第二版新功能簡介如下:

          NEW FEATURES IN VERSION 2

          Perform Survival Analysis in a Variety of new ways

          Users can now perform analysis on single genes, or select to perform analysis on mean expression of a group of user defined genes
          Users can now perform analysis on Gene-Gene ratio
          Also, users can perform analysis on entire gene signatures
          Chose from a repository of more than 10000 curated/published gene signatures.

          New/Additional Datasets

          We have added new datasets for tissue types in version 2. We have also introduced datasets for 3 tissue types for first time

          Efficient use of covariates

          Users can now divide cohorts selected for analysis by covariates available for the cohort. Also, users can now adjust survival model for available covariates

          Better graphs with statistics

          Click on the hyperlinked smaller graph on results page to get high resolution publication quality images. Also available are summary statistics for the survival model in table format

          詳見:http://genomics.jefferson.edu/proggene/intro.php


          可惜的是,今天試用的時候,最后一步竟然不行,大家看看運氣吧!


          相關論文

          VERSION 1 oswami CP and Nakshatri H. PROGgene: gene expression based survival analysis web application for multiple cancers. J Clin Bioinforma (非SCI或ESCI). 2013 Oct 28;3(1):22 閱讀此文

          VERSION 2 oswami CP and Nakshatri H. PROGgeneV2: enhancements on the existing database. BMC Cancer (IF=2.933). 2014 14:970. 閱讀此文


          03:SurvExpress

          網址:http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp

          簡介

          最后一步無法操作


          相關論文

          Aguirre-Gamboa, R., Gomez-Rueda, H., Martínez-Ledesma, E., Martínez-Torteya, A., Chacolla-Huaringa, R., Rodriguez-Barrientos, A., ... & Trevino, V. (2013). SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PloS One (IF=2.776), 8 (9). 閱讀此文


          04:KM-express

          網址:http://ec2-52-201-246-161.compute-1.amazonaws.com/kmexpress/index.php

          簡介

          哎~又是一個好難打開的網站

          相關論文

          Chen, X., Miao, Z., Divate, M., Zhao, Z., & Cheung, E. (2018). KM-express: an integrated online patient survival and gene expression analysis tool for the identification and functional characterization of prognostic markers in breast and prostate cancers. Database-the Journal of Biological Databases and Curation (IF=3.683), 2018. 閱讀此文


          05:PrognoScan

          網址:http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html

          簡介

          好素的首頁▲

          相關論文

          Mizuno, H., Kitada, K., Nakai, K., & Sarai, A. (2009). PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Medical Genomics (IF=2.568), 2 (1), 18. 閱讀此文


          06:lnCAR: lncRNA Explorer

          網址:https://lncar.renlab.org/

          簡介

          主要功能就是做lncRNA的差異表達和生存分析

          相關論文

          Zheng, Y., Xu, Q., Liu, M., Hu, H., Xie, Y., Zuo, Z., & Ren, J. (2019). lnCAR: a comprehensive resource for lncRNAs from Cancer Arrays. Cancer Research (IF=8.378), 79 (8), 2076-2083. 閱讀此文


          07:UALCAN

          網址:http://ualcan.path.uab.edu/analysis.html

          簡介

          使用者點評

          可以調節的參數較少,而且設置起來特別別扭,而且圖表都很丑。

          相關論文

          Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B. V., & Varambally, S. (2017). UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (IF=3.837), 19 (8), 649-658. 閱讀此文


          08:OncoLnc

          網址:http://www.oncolnc.org/

          簡介

          名字雖然是帶lnc,但是不僅僅有lncRNA,還有mRNA和miRNA。

          相關論文

          Anaya, J. (2016). OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science (新入選SCI,無IF), 2 , e67. 閱讀此文


          09:OncomiR

          網址:http://www.oncomir.org/

          簡介

          使用者點評

          生成的生存曲線清晰度差,無PDF格式文件。

          相關論文

          Wong, N. W., Chen, Y., Chen, S., & Wang, X. (2018). OncomiR: an online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics (IF=4.531), 34 (4), 713-715. 閱讀此文


          10:MethSurv

          網址:https://biit.cs.ut.ee/methsurv/

          簡介

          TCGA數據庫中收錄的主要是450K芯片的數據,也有一些早期27K芯片的數據。本文所述的MethSurv就是基于TCGA數據集中的450K數據構建的可視化分析工具。MethSurv適用于沒有特定生物信息學技能(不熟悉編程分析)的研究人員和臨床醫生,主要用于探索與癌癥患者生存相關的甲基化生物標記物。

          相關論文

          Modhukur, V., Iljasenko, T., Metsalu, T., Lokk, K., Laisk-Podar, T., & Vilo, J. (2018). MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics (IF=4.404), 10 (3), 277-288. 閱讀此文


          11:BloodSpot

          網址:http://servers.binf.ku.dk/bloodspot/

          簡介

          加載半天就出現上面這個鬼樣子▲

          提供健康和惡性造血中基因和基因特征的基因表達譜,包括來自人類和小鼠的數據。除了顯示集成表達圖的默認圖外,還有兩個額外的可視化級別; 一個交互式樹,顯示樣本之間的層次關系,以及Kaplan-Meier生存圖。數據庫被細分為幾個可供瀏覽的數據集。

          相關論文

          Bagger, F. O., Sasivarevic, D., Sohi, S. H., Laursen, L. G., Pundhir, S., S??nderby, C. K., ... & Porse, B. T. (2016). BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic acids research (IF=11.147), 44 (D1), D917-D924. 閱讀此文


          12:GEPIA 2

          網址:http://gepia2.cancer-pku.cn/#survival

          簡介

          在線TCGA基因表達和生存分析的工具(GEPIA2),2019年發表在NAR上,目前已更新到2.0版本。

          使用者點評

          北大做的一個在線生信系統,可以分析存活曲線、共表達、癌腫分析等,非常好用,而且在墻內,所以速度很優秀。

          相關論文

          Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic acids research (IF=11.147), 47 (W1), W556-W560. 閱讀此文

          Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic acids research (IF=11.147), 45 (W1), W98-W102. 閱讀此文


          13:GenomicScape

          網址:http://www.genomicscape.com/microarray/survival.php

          簡介

          數據不是非常豐富,包括結直腸癌、白血病、肝癌、淋巴癌、多發性骨髓瘤和卵巢癌的芯片數據。另外,圖丑得不要不要的,這線條粗得,嘖嘖嘖...如下圖,感受一下。大家看看能不能調吧!

          相關論文

          Kassambara, A., Rème, T., Jourdan, M., Fest, T., Hose, D., Tarte, K., & Klein, B. (2015). GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLoS Computational Biology (IF=4.428), 11 (1).


          14:ExSurv

          網址:https://exsurv.soic.iupui.edu/

          簡介

          ExSurv is a web resource for studying the survival contributions of exons across human cancers using RNA-seq data. ExSurv is the first web server which provides exon level survival significance by using the RNA-seq expression datasets and the clinical metadata for four cancer types from The Cancer Genome Atlas (TCGA) project. We pre-calculated the prognostic significance of more than 600,000 annotated exons in Ensembl using survival package in R. We stored the TCGA clinical data, exon survival p-values and the expression of the significant exons for visualizing the survival curves in a MySQL database. We developed an integrated backend using PHP and R and used JavaScript in the frontend. The PHP/R backend is reponsible for querying the MySQL database upon user input, calling R to visualize the corresponding database results (using survival package) and returning these results to the frontend. In the frontend, the results are shown to the users in an organized way as a table where each row corresponds to an exon in the queried gene symbol or Ensembl gene ID. It is possible to export the survival plots in SVG (scalable vector graphics) format and the raw data used to generate the plot in TSV (tab-separated values) format.

          腫瘤類型目前只有乳腺癌、膠質瘤、腎癌和肝癌

          相關論文

          Hashemikhabir, S., Budak, G., & Janga, S. C. (2016). ExSurv: A web resource for prognostic analyses of exons across human cancers using clinical transcriptomes. Cancer informatics (ESCI), 15 , CIN-S39367. 閱讀此文


          15:LOGpc

          網址:http://bioinfo.henu.edu.cn/DatabaseList.jsp

          簡介

          LOGpc ( Long-term Outcome and Gene Expression Profiling Database of pan-cancers ) encompasses 209 expression datasets, provides 13 types of survival terms for 31310 patients of 27 distinct malignancies.

          相關論文

          這個工具是2019、2020年才開始出現的,該課題組發表的相關論文太多了,懶得寫了。幾乎每種癌癥都發一篇文章,這個操作夠騷的。詳見:http://bioinfo.henu.edu.cn/results.html。主要發表的期刊如下:

          Front Oncol (IF=4.137)

          Front Genet (IF=3.517)

          Cancer Med (IF=3.357)

          Mol Carcinog (IF=3.411)

          Cancer Manag Res (IF=2.243)

          Future Oncol (IF=2.279)


          其它亂七八糟可能用得上的工具

          16. CBioportal

          ,是一個全能的TCGA生信分析平臺,可以選擇的數據庫數量是所有網站中最多的,但不是所有的數據源都有survival信息,例如肺腺癌。另外,好像很多數據是基因拷貝數和突變,而不是表達量。還有,沒有健康對照組,相當尷尬。


          17. Watson,提供的數據庫類別多,和CBioportal收錄的互有補充。有人覺得界面不大人性化,畫出來的圖很丑。目前我用的移動寬帶打不開...


          18. UCSC Xena,非常全能的數據庫,存活曲線只是其中一個小功能,更多的是統計和分析。But...網站想打開也是夠嗆。


          19. GDC portal,TCGA自家的工具,能不能打開好像也是看網絡心情。可能需要用VPN搞起!


          20.SurvMicro,和SurvExpress是一家的,2019年10月份鏈接(即發表的論文中的鏈接)失效了,不過備用鏈接打開了,但最后一步也無法操作。課題組說沒錢了...

          Aguirre-Gamboa, R., & Trevino, V. (2014). SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis. Bioinformatics (IF=4.531), 30 (11), 1630-1632. 閱讀此文


          21. CANSURV,不想說了,瀏覽器又在轉圈圈,開不動...不過,發現個可下載的軟件CanSurv version 1.4(2018年5月發行版本),不知道是不是一家的,也沒時間研究了。鏈接在這:

          https://surveillance.cancer.gov/cansurv/download,大家自己瞅瞅。

          Yu et al. (2005). CANSURV: a Windows program for population-based cancer survival analysis. Computer methods and programs in biomedicine , 80 (3), 195-203.


          22. OSA (Online Survival Analysis),這個不是打不開,而是網站直接就有錯誤...希望早點修復吧!不過好像不是我所想的那個樣子。

          Montes-Torres et al. (2016). Advanced online survival analysis tool for predictive modelling in clinical data science. PloS One (IF=2.776), 11 (8).


          23. SurvCurv,沒人的數據,其它的還不是非常熟悉,感興趣的自行摸索。

          Ziehm et al. (2015). SurvCurv database and online survival analysis platform update. Bioinformatics (IF=4.531), 31 (23), 3878-3880. 閱讀此文。


          24. TCPA v3.0,此數據庫是基于蛋白質組學結果的,不僅僅是生存分析,還有更多的功能。網站能打開,但是非常慢,你們自己想辦法看看吧!

          Chen et al. (2019). TCPA v3. 0: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Molecular & Cellular Proteomics (IF=4.828), 18 (8 suppl 1), S15-S25. 閱讀此文。


          25. LCE專注肺癌基因表達和臨床關系的數據庫。

          Cai et al. (2019). LCE: an open web portal to explore gene expression and clinical associations in lung cancer. Oncogene (IF=6.634), 38 (14), 2551-2564. 閱讀此文


          26. DriverDBv3,能打開,就是速度有點慢。

          Liu, S. H., Shen, P. C., Chen, C. Y., Hsu, A. N., Cho, Y. C., Lai, Y. L., ... & Chung, I. F. (2020). DriverDBv3: a multi-omics database for cancer driver gene research. Nucleic acids research (IF=11.147), 48 (D1), D863-D870. 閱讀此文


          27. LncACTdb 2.0,在做生存分析方面,操作極其簡單粗暴!

          Wang, P., Li, X., Gao, Y., Guo, Q., Wang, Y., Fang, Y., ... & Liu, W. (2019). LncACTdb 2.0: an updated database of experimentally supported ceRNA interactions curated from low-and high-throughput experiments. Nucleic acids research (IF=11.147), 47 (D1), D121-D127. 閱讀此文


          28. Oncomine,需要用高效單位郵箱注冊,不是很方便使用。


          最后,今天介紹的這些工具有不少是需要用Chrome瀏覽器才能打開或者正常顯示的,大家記著一個瀏覽器不行的話,就多試試別的,360、搜狗、火狐、Chrome、IE、Edge都試試。還有個很重要的事,家里用的移動寬帶經常上不了很大一部分上述國外網站,臨時的比較湊合的解決辦法是用手機開個熱點是時候考慮徹底換個運營商了,電信手機卡、電信寬帶趕緊通通搞起!


          如果還有什么好的工具沒有列出來的,大家可以留言,以后我再慢慢匯總。

          的生存分析在線工具不斷更新的同時,新的工具不斷涌現,真是讓人應接不暇。今天在這將現有的這些工具做一個綜合整理。關于在線分析軟件相關文獻的發表期刊和年份我分別用紅色和黑色加粗字體標記了,在選擇相應工作的時候可以作為參考。加了的是網頁使用比較順暢的。


          01:Kaplan Meier-plotter

          網址:http://kmplot.com/analysis/index.php?p=background

          簡介

          The Kaplan Meier plotter is capable to assess the effect of 54k genes on survival in 21 cancer types. The largest datasets include breast (n=6,234), ovarian (n=2,190), lung (n=3,452), and gastric (n=1,440) cancer. The miRNA subsystems include 11k samples from 20 different cancer types. The system includes gene chip and RNA-seq data - sources for the databases include GEO, EGA, and TCGA. Primary purpose of the tool is a meta-analysis based discovery and validation of survival biomarkers.

          使用者點評

          這個網頁提供的內置的乳腺癌、卵巢癌、肺癌、肝癌、胃癌數據庫,不能選擇TCGA特定的數據庫。而且分析的多是Microarray而不是主流的RNAseq數據,所以看一眼就行了,不是一個主流的網站。(感覺是做測序的瞧不起做芯片的)

          相關論文

          1. Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer, PLoS One (IF=2.776), 2013 Dec 18;8(12):e82241. doi: 10.1371/journal.pone.0082241. 閱讀此文

          2. Nagy A, Lánczky A, Menyhárt O, Gy?rffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets,?Scientific Reports (IF=4.011), 2018;8:9227 閱讀此文


          02:PROGgene

          網址:http://genomics.jefferson.edu/proggene/

          簡介

          PROGgene - Pan Cancer Prognostics Database。與其它軟件不同的是這個工具提供了基因表達水平比值的預后分析。不過,應該和Normalized by gene(例如GEPIA2)的功能一樣的效果。


          第二版新功能簡介如下:

          NEW FEATURES IN VERSION 2

          Perform Survival Analysis in a Variety of new ways

          Users can now perform analysis on single genes, or select to perform analysis on mean expression of a group of user defined genes
          Users can now perform analysis on Gene-Gene ratio
          Also, users can perform analysis on entire gene signatures
          Chose from a repository of more than 10000 curated/published gene signatures.

          New/Additional Datasets

          We have added new datasets for tissue types in version 2. We have also introduced datasets for 3 tissue types for first time

          Efficient use of covariates

          Users can now divide cohorts selected for analysis by covariates available for the cohort. Also, users can now adjust survival model for available covariates

          Better graphs with statistics

          Click on the hyperlinked smaller graph on results page to get high resolution publication quality images. Also available are summary statistics for the survival model in table format

          詳見:http://genomics.jefferson.edu/proggene/intro.php


          可惜的是,今天試用的時候,最后一步竟然不行,大家看看運氣吧!


          相關論文

          VERSION 1 oswami CP and Nakshatri H. PROGgene: gene expression based survival analysis web application for multiple cancers. J Clin Bioinforma (非SCI或ESCI). 2013 Oct 28;3(1):22 閱讀此文

          VERSION 2 oswami CP and Nakshatri H. PROGgeneV2: enhancements on the existing database. BMC Cancer (IF=2.933). 2014 14:970. 閱讀此文


          03:SurvExpress

          網址:http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp

          簡介

          最后一步無法操作


          相關論文

          Aguirre-Gamboa, R., Gomez-Rueda, H., Martínez-Ledesma, E., Martínez-Torteya, A., Chacolla-Huaringa, R., Rodriguez-Barrientos, A., ... & Trevino, V. (2013). SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PloS One (IF=2.776), 8 (9). 閱讀此文


          04:KM-express

          網址:http://ec2-52-201-246-161.compute-1.amazonaws.com/kmexpress/index.php

          簡介

          哎~又是一個好難打開的網站

          相關論文

          Chen, X., Miao, Z., Divate, M., Zhao, Z., & Cheung, E. (2018). KM-express: an integrated online patient survival and gene expression analysis tool for the identification and functional characterization of prognostic markers in breast and prostate cancers. Database-the Journal of Biological Databases and Curation (IF=3.683), 2018. 閱讀此文


          05:PrognoScan

          網址:http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html

          簡介

          好素的首頁▲

          相關論文

          Mizuno, H., Kitada, K., Nakai, K., & Sarai, A. (2009). PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Medical Genomics (IF=2.568), 2 (1), 18. 閱讀此文


          06:lnCAR: lncRNA Explorer

          網址:https://lncar.renlab.org/

          簡介

          主要功能就是做lncRNA的差異表達和生存分析

          相關論文

          Zheng, Y., Xu, Q., Liu, M., Hu, H., Xie, Y., Zuo, Z., & Ren, J. (2019). lnCAR: a comprehensive resource for lncRNAs from Cancer Arrays. Cancer Research (IF=8.378), 79 (8), 2076-2083. 閱讀此文


          07:UALCAN

          網址:http://ualcan.path.uab.edu/analysis.html

          簡介

          使用者點評

          可以調節的參數較少,而且設置起來特別別扭,而且圖表都很丑。

          相關論文

          Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B. V., & Varambally, S. (2017). UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (IF=3.837), 19 (8), 649-658. 閱讀此文


          08:OncoLnc

          網址:http://www.oncolnc.org/

          簡介

          名字雖然是帶lnc,但是不僅僅有lncRNA,還有mRNA和miRNA。

          相關論文

          Anaya, J. (2016). OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science (新入選SCI,無IF), 2 , e67. 閱讀此文


          09:OncomiR

          網址:http://www.oncomir.org/

          簡介

          使用者點評

          生成的生存曲線清晰度差,無PDF格式文件。

          相關論文

          Wong, N. W., Chen, Y., Chen, S., & Wang, X. (2018). OncomiR: an online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics (IF=4.531), 34 (4), 713-715. 閱讀此文


          10:MethSurv

          網址:https://biit.cs.ut.ee/methsurv/

          簡介

          TCGA數據庫中收錄的主要是450K芯片的數據,也有一些早期27K芯片的數據。本文所述的MethSurv就是基于TCGA數據集中的450K數據構建的可視化分析工具。MethSurv適用于沒有特定生物信息學技能(不熟悉編程分析)的研究人員和臨床醫生,主要用于探索與癌癥患者生存相關的甲基化生物標記物。

          相關論文

          Modhukur, V., Iljasenko, T., Metsalu, T., Lokk, K., Laisk-Podar, T., & Vilo, J. (2018). MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics (IF=4.404), 10 (3), 277-288. 閱讀此文


          11:BloodSpot

          網址:http://servers.binf.ku.dk/bloodspot/

          簡介

          加載半天就出現上面這個鬼樣子▲

          提供健康和惡性造血中基因和基因特征的基因表達譜,包括來自人類和小鼠的數據。除了顯示集成表達圖的默認圖外,還有兩個額外的可視化級別; 一個交互式樹,顯示樣本之間的層次關系,以及Kaplan-Meier生存圖。數據庫被細分為幾個可供瀏覽的數據集。

          相關論文

          Bagger, F. O., Sasivarevic, D., Sohi, S. H., Laursen, L. G., Pundhir, S., S??nderby, C. K., ... & Porse, B. T. (2016). BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic acids research (IF=11.147), 44 (D1), D917-D924. 閱讀此文


          12:GEPIA 2

          網址:http://gepia2.cancer-pku.cn/#survival

          簡介

          在線TCGA基因表達和生存分析的工具(GEPIA2),2019年發表在NAR上,目前已更新到2.0版本。

          使用者點評

          北大做的一個在線生信系統,可以分析存活曲線、共表達、癌腫分析等,非常好用,而且在墻內,所以速度很優秀。

          相關論文

          Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic acids research (IF=11.147), 47 (W1), W556-W560. 閱讀此文

          Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic acids research (IF=11.147), 45 (W1), W98-W102. 閱讀此文


          13:GenomicScape

          網址:http://www.genomicscape.com/microarray/survival.php

          簡介

          數據不是非常豐富,包括結直腸癌、白血病、肝癌、淋巴癌、多發性骨髓瘤和卵巢癌的芯片數據。另外,圖丑得不要不要的,這線條粗得,嘖嘖嘖...如下圖,感受一下。大家看看能不能調吧!

          相關論文

          Kassambara, A., Rème, T., Jourdan, M., Fest, T., Hose, D., Tarte, K., & Klein, B. (2015). GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLoS Computational Biology (IF=4.428), 11 (1).


          14:ExSurv

          網址:https://exsurv.soic.iupui.edu/

          簡介

          ExSurv is a web resource for studying the survival contributions of exons across human cancers using RNA-seq data. ExSurv is the first web server which provides exon level survival significance by using the RNA-seq expression datasets and the clinical metadata for four cancer types from The Cancer Genome Atlas (TCGA) project. We pre-calculated the prognostic significance of more than 600,000 annotated exons in Ensembl using survival package in R. We stored the TCGA clinical data, exon survival p-values and the expression of the significant exons for visualizing the survival curves in a MySQL database. We developed an integrated backend using PHP and R and used JavaScript in the frontend. The PHP/R backend is reponsible for querying the MySQL database upon user input, calling R to visualize the corresponding database results (using survival package) and returning these results to the frontend. In the frontend, the results are shown to the users in an organized way as a table where each row corresponds to an exon in the queried gene symbol or Ensembl gene ID. It is possible to export the survival plots in SVG (scalable vector graphics) format and the raw data used to generate the plot in TSV (tab-separated values) format.

          腫瘤類型目前只有乳腺癌、膠質瘤、腎癌和肝癌

          相關論文

          Hashemikhabir, S., Budak, G., & Janga, S. C. (2016). ExSurv: A web resource for prognostic analyses of exons across human cancers using clinical transcriptomes. Cancer informatics (ESCI), 15 , CIN-S39367. 閱讀此文


          15:LOGpc

          網址:http://bioinfo.henu.edu.cn/DatabaseList.jsp

          簡介

          LOGpc ( Long-term Outcome and Gene Expression Profiling Database of pan-cancers ) encompasses 209 expression datasets, provides 13 types of survival terms for 31310 patients of 27 distinct malignancies.

          相關論文

          這個工具是2019、2020年才開始出現的,該課題組發表的相關論文太多了,懶得寫了。幾乎每種癌癥都發一篇文章,這個操作夠騷的。詳見:http://bioinfo.henu.edu.cn/results.html。主要發表的期刊如下:

          Front Oncol (IF=4.137)

          Front Genet (IF=3.517)

          Cancer Med (IF=3.357)

          Mol Carcinog (IF=3.411)

          Cancer Manag Res (IF=2.243)

          Future Oncol (IF=2.279)


          其它亂七八糟可能用得上的工具

          16. CBioportal

          ,是一個全能的TCGA生信分析平臺,可以選擇的數據庫數量是所有網站中最多的,但不是所有的數據源都有survival信息,例如肺腺癌。另外,好像很多數據是基因拷貝數和突變,而不是表達量。還有,沒有健康對照組,相當尷尬。


          17. Watson,提供的數據庫類別多,和CBioportal收錄的互有補充。有人覺得界面不大人性化,畫出來的圖很丑。目前我用的移動寬帶打不開...


          18. UCSC Xena,非常全能的數據庫,存活曲線只是其中一個小功能,更多的是統計和分析。But...網站想打開也是夠嗆。


          19. GDC portal,TCGA自家的工具,能不能打開好像也是看網絡心情。可能需要用VPN搞起!


          20.SurvMicro,和SurvExpress是一家的,2019年10月份鏈接(即發表的論文中的鏈接)失效了,不過備用鏈接打開了,但最后一步也無法操作。課題組說沒錢了...

          Aguirre-Gamboa, R., & Trevino, V. (2014). SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis. Bioinformatics (IF=4.531), 30 (11), 1630-1632. 閱讀此文


          21. CANSURV,不想說了,瀏覽器又在轉圈圈,開不動...不過,發現個可下載的軟件CanSurv version 1.4(2018年5月發行版本),不知道是不是一家的,也沒時間研究了。鏈接在這:

          https://surveillance.cancer.gov/cansurv/download,大家自己瞅瞅。

          Yu et al. (2005). CANSURV: a Windows program for population-based cancer survival analysis. Computer methods and programs in biomedicine , 80 (3), 195-203.


          22. OSA (Online Survival Analysis),這個不是打不開,而是網站直接就有錯誤...希望早點修復吧!不過好像不是我所想的那個樣子。

          Montes-Torres et al. (2016). Advanced online survival analysis tool for predictive modelling in clinical data science. PloS One (IF=2.776), 11 (8).


          23. SurvCurv,沒人的數據,其它的還不是非常熟悉,感興趣的自行摸索。

          Ziehm et al. (2015). SurvCurv database and online survival analysis platform update. Bioinformatics (IF=4.531), 31 (23), 3878-3880. 閱讀此文。


          24. TCPA v3.0,此數據庫是基于蛋白質組學結果的,不僅僅是生存分析,還有更多的功能。網站能打開,但是非常慢,你們自己想辦法看看吧!

          Chen et al. (2019). TCPA v3. 0: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Molecular & Cellular Proteomics (IF=4.828), 18 (8 suppl 1), S15-S25. 閱讀此文。


          25. LCE專注肺癌基因表達和臨床關系的數據庫。

          Cai et al. (2019). LCE: an open web portal to explore gene expression and clinical associations in lung cancer. Oncogene (IF=6.634), 38 (14), 2551-2564. 閱讀此文


          26. DriverDBv3,能打開,就是速度有點慢。

          Liu, S. H., Shen, P. C., Chen, C. Y., Hsu, A. N., Cho, Y. C., Lai, Y. L., ... & Chung, I. F. (2020). DriverDBv3: a multi-omics database for cancer driver gene research. Nucleic acids research (IF=11.147), 48 (D1), D863-D870. 閱讀此文


          27. LncACTdb 2.0,在做生存分析方面,操作極其簡單粗暴!

          Wang, P., Li, X., Gao, Y., Guo, Q., Wang, Y., Fang, Y., ... & Liu, W. (2019). LncACTdb 2.0: an updated database of experimentally supported ceRNA interactions curated from low-and high-throughput experiments. Nucleic acids research (IF=11.147), 47 (D1), D121-D127. 閱讀此文


          28. Oncomine,需要用高效單位郵箱注冊,不是很方便使用。


          最后,今天介紹的這些工具有不少是需要用Chrome瀏覽器才能打開或者正常顯示的,大家記著一個瀏覽器不行的話,就多試試別的,360、搜狗、火狐、Chrome、IE、Edge都試試。還有個很重要的事,家里用的移動寬帶經常上不了很大一部分上述國外網站,臨時的比較湊合的解決辦法是用手機開個熱點是時候考慮徹底換個運營商了,電信手機卡、電信寬帶趕緊通通搞起!


          如果還有什么好的工具沒有列出來的,大家可以留言,以后我再慢慢匯總。

          的生存分析在線工具不斷更新的同時,新的工具不斷涌現,真是讓人應接不暇。今天在這將現有的這些工具做一個綜合整理。關于在線分析軟件相關文獻的發表期刊和年份我分別用紅色和黑色加粗字體標記了,在選擇相應工作的時候可以作為參考。加了的是網頁使用比較順暢的。


          01:Kaplan Meier-plotter

          網址:http://kmplot.com/analysis/index.php?p=background

          簡介

          The Kaplan Meier plotter is capable to assess the effect of 54k genes on survival in 21 cancer types. The largest datasets include breast (n=6,234), ovarian (n=2,190), lung (n=3,452), and gastric (n=1,440) cancer. The miRNA subsystems include 11k samples from 20 different cancer types. The system includes gene chip and RNA-seq data - sources for the databases include GEO, EGA, and TCGA. Primary purpose of the tool is a meta-analysis based discovery and validation of survival biomarkers.

          使用者點評

          這個網頁提供的內置的乳腺癌、卵巢癌、肺癌、肝癌、胃癌數據庫,不能選擇TCGA特定的數據庫。而且分析的多是Microarray而不是主流的RNAseq數據,所以看一眼就行了,不是一個主流的網站。(感覺是做測序的瞧不起做芯片的)

          相關論文

          1. Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer, PLoS One (IF=2.776), 2013 Dec 18;8(12):e82241. doi: 10.1371/journal.pone.0082241. 閱讀此文

          2. Nagy A, Lánczky A, Menyhárt O, Gy?rffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets,?Scientific Reports (IF=4.011), 2018;8:9227 閱讀此文


          02:PROGgene

          網址:http://genomics.jefferson.edu/proggene/

          簡介

          PROGgene - Pan Cancer Prognostics Database。與其它軟件不同的是這個工具提供了基因表達水平比值的預后分析。不過,應該和Normalized by gene(例如GEPIA2)的功能一樣的效果。


          第二版新功能簡介如下:

          NEW FEATURES IN VERSION 2

          Perform Survival Analysis in a Variety of new ways

          Users can now perform analysis on single genes, or select to perform analysis on mean expression of a group of user defined genes
          Users can now perform analysis on Gene-Gene ratio
          Also, users can perform analysis on entire gene signatures
          Chose from a repository of more than 10000 curated/published gene signatures.

          New/Additional Datasets

          We have added new datasets for tissue types in version 2. We have also introduced datasets for 3 tissue types for first time

          Efficient use of covariates

          Users can now divide cohorts selected for analysis by covariates available for the cohort. Also, users can now adjust survival model for available covariates

          Better graphs with statistics

          Click on the hyperlinked smaller graph on results page to get high resolution publication quality images. Also available are summary statistics for the survival model in table format

          詳見:http://genomics.jefferson.edu/proggene/intro.php


          可惜的是,今天試用的時候,最后一步竟然不行,大家看看運氣吧!


          相關論文

          VERSION 1 oswami CP and Nakshatri H. PROGgene: gene expression based survival analysis web application for multiple cancers. J Clin Bioinforma (非SCI或ESCI). 2013 Oct 28;3(1):22 閱讀此文

          VERSION 2 oswami CP and Nakshatri H. PROGgeneV2: enhancements on the existing database. BMC Cancer (IF=2.933). 2014 14:970. 閱讀此文


          03:SurvExpress

          網址:http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp

          簡介

          最后一步無法操作


          相關論文

          Aguirre-Gamboa, R., Gomez-Rueda, H., Martínez-Ledesma, E., Martínez-Torteya, A., Chacolla-Huaringa, R., Rodriguez-Barrientos, A., ... & Trevino, V. (2013). SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PloS One (IF=2.776), 8 (9). 閱讀此文


          04:KM-express

          網址:http://ec2-52-201-246-161.compute-1.amazonaws.com/kmexpress/index.php

          簡介

          哎~又是一個好難打開的網站

          相關論文

          Chen, X., Miao, Z., Divate, M., Zhao, Z., & Cheung, E. (2018). KM-express: an integrated online patient survival and gene expression analysis tool for the identification and functional characterization of prognostic markers in breast and prostate cancers. Database-the Journal of Biological Databases and Curation (IF=3.683), 2018. 閱讀此文


          05:PrognoScan

          網址:http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html

          簡介

          好素的首頁▲

          相關論文

          Mizuno, H., Kitada, K., Nakai, K., & Sarai, A. (2009). PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Medical Genomics (IF=2.568), 2 (1), 18. 閱讀此文


          06:lnCAR: lncRNA Explorer

          網址:https://lncar.renlab.org/

          簡介

          主要功能就是做lncRNA的差異表達和生存分析

          相關論文

          Zheng, Y., Xu, Q., Liu, M., Hu, H., Xie, Y., Zuo, Z., & Ren, J. (2019). lnCAR: a comprehensive resource for lncRNAs from Cancer Arrays. Cancer Research (IF=8.378), 79 (8), 2076-2083. 閱讀此文


          07:UALCAN

          網址:http://ualcan.path.uab.edu/analysis.html

          簡介

          使用者點評

          可以調節的參數較少,而且設置起來特別別扭,而且圖表都很丑。

          相關論文

          Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B. V., & Varambally, S. (2017). UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (IF=3.837), 19 (8), 649-658. 閱讀此文


          08:OncoLnc

          網址:http://www.oncolnc.org/

          簡介

          名字雖然是帶lnc,但是不僅僅有lncRNA,還有mRNA和miRNA。

          相關論文

          Anaya, J. (2016). OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science (新入選SCI,無IF), 2 , e67. 閱讀此文


          09:OncomiR

          網址:http://www.oncomir.org/

          簡介

          使用者點評

          生成的生存曲線清晰度差,無PDF格式文件。

          相關論文

          Wong, N. W., Chen, Y., Chen, S., & Wang, X. (2018). OncomiR: an online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics (IF=4.531), 34 (4), 713-715. 閱讀此文


          10:MethSurv

          網址:https://biit.cs.ut.ee/methsurv/

          簡介

          TCGA數據庫中收錄的主要是450K芯片的數據,也有一些早期27K芯片的數據。本文所述的MethSurv就是基于TCGA數據集中的450K數據構建的可視化分析工具。MethSurv適用于沒有特定生物信息學技能(不熟悉編程分析)的研究人員和臨床醫生,主要用于探索與癌癥患者生存相關的甲基化生物標記物。

          相關論文

          Modhukur, V., Iljasenko, T., Metsalu, T., Lokk, K., Laisk-Podar, T., & Vilo, J. (2018). MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics (IF=4.404), 10 (3), 277-288. 閱讀此文


          11:BloodSpot

          網址:http://servers.binf.ku.dk/bloodspot/

          簡介

          加載半天就出現上面這個鬼樣子▲

          提供健康和惡性造血中基因和基因特征的基因表達譜,包括來自人類和小鼠的數據。除了顯示集成表達圖的默認圖外,還有兩個額外的可視化級別; 一個交互式樹,顯示樣本之間的層次關系,以及Kaplan-Meier生存圖。數據庫被細分為幾個可供瀏覽的數據集。

          相關論文

          Bagger, F. O., Sasivarevic, D., Sohi, S. H., Laursen, L. G., Pundhir, S., S??nderby, C. K., ... & Porse, B. T. (2016). BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic acids research (IF=11.147), 44 (D1), D917-D924. 閱讀此文


          12:GEPIA 2

          網址:http://gepia2.cancer-pku.cn/#survival

          簡介

          在線TCGA基因表達和生存分析的工具(GEPIA2),2019年發表在NAR上,目前已更新到2.0版本。

          使用者點評

          北大做的一個在線生信系統,可以分析存活曲線、共表達、癌腫分析等,非常好用,而且在墻內,所以速度很優秀。

          相關論文

          Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic acids research (IF=11.147), 47 (W1), W556-W560. 閱讀此文

          Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic acids research (IF=11.147), 45 (W1), W98-W102. 閱讀此文


          13:GenomicScape

          網址:http://www.genomicscape.com/microarray/survival.php

          簡介

          數據不是非常豐富,包括結直腸癌、白血病、肝癌、淋巴癌、多發性骨髓瘤和卵巢癌的芯片數據。另外,圖丑得不要不要的,這線條粗得,嘖嘖嘖...如下圖,感受一下。大家看看能不能調吧!

          相關論文

          Kassambara, A., Rème, T., Jourdan, M., Fest, T., Hose, D., Tarte, K., & Klein, B. (2015). GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLoS Computational Biology (IF=4.428), 11 (1).


          14:ExSurv

          網址:https://exsurv.soic.iupui.edu/

          簡介

          ExSurv is a web resource for studying the survival contributions of exons across human cancers using RNA-seq data. ExSurv is the first web server which provides exon level survival significance by using the RNA-seq expression datasets and the clinical metadata for four cancer types from The Cancer Genome Atlas (TCGA) project. We pre-calculated the prognostic significance of more than 600,000 annotated exons in Ensembl using survival package in R. We stored the TCGA clinical data, exon survival p-values and the expression of the significant exons for visualizing the survival curves in a MySQL database. We developed an integrated backend using PHP and R and used JavaScript in the frontend. The PHP/R backend is reponsible for querying the MySQL database upon user input, calling R to visualize the corresponding database results (using survival package) and returning these results to the frontend. In the frontend, the results are shown to the users in an organized way as a table where each row corresponds to an exon in the queried gene symbol or Ensembl gene ID. It is possible to export the survival plots in SVG (scalable vector graphics) format and the raw data used to generate the plot in TSV (tab-separated values) format.

          腫瘤類型目前只有乳腺癌、膠質瘤、腎癌和肝癌

          相關論文

          Hashemikhabir, S., Budak, G., & Janga, S. C. (2016). ExSurv: A web resource for prognostic analyses of exons across human cancers using clinical transcriptomes. Cancer informatics (ESCI), 15 , CIN-S39367. 閱讀此文


          15:LOGpc

          網址:http://bioinfo.henu.edu.cn/DatabaseList.jsp

          簡介

          LOGpc ( Long-term Outcome and Gene Expression Profiling Database of pan-cancers ) encompasses 209 expression datasets, provides 13 types of survival terms for 31310 patients of 27 distinct malignancies.

          相關論文

          這個工具是2019、2020年才開始出現的,該課題組發表的相關論文太多了,懶得寫了。幾乎每種癌癥都發一篇文章,這個操作夠騷的。詳見:http://bioinfo.henu.edu.cn/results.html。主要發表的期刊如下:

          Front Oncol (IF=4.137)

          Front Genet (IF=3.517)

          Cancer Med (IF=3.357)

          Mol Carcinog (IF=3.411)

          Cancer Manag Res (IF=2.243)

          Future Oncol (IF=2.279)


          其它亂七八糟可能用得上的工具

          16. CBioportal

          ,是一個全能的TCGA生信分析平臺,可以選擇的數據庫數量是所有網站中最多的,但不是所有的數據源都有survival信息,例如肺腺癌。另外,好像很多數據是基因拷貝數和突變,而不是表達量。還有,沒有健康對照組,相當尷尬。


          17. Watson,提供的數據庫類別多,和CBioportal收錄的互有補充。有人覺得界面不大人性化,畫出來的圖很丑。目前我用的移動寬帶打不開...


          18. UCSC Xena,非常全能的數據庫,存活曲線只是其中一個小功能,更多的是統計和分析。But...網站想打開也是夠嗆。


          19. GDC portal,TCGA自家的工具,能不能打開好像也是看網絡心情。可能需要用VPN搞起!


          20.SurvMicro,和SurvExpress是一家的,2019年10月份鏈接(即發表的論文中的鏈接)失效了,不過備用鏈接打開了,但最后一步也無法操作。課題組說沒錢了...

          Aguirre-Gamboa, R., & Trevino, V. (2014). SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis. Bioinformatics (IF=4.531), 30 (11), 1630-1632. 閱讀此文


          21. CANSURV,不想說了,瀏覽器又在轉圈圈,開不動...不過,發現個可下載的軟件CanSurv version 1.4(2018年5月發行版本),不知道是不是一家的,也沒時間研究了。鏈接在這:

          https://surveillance.cancer.gov/cansurv/download,大家自己瞅瞅。

          Yu et al. (2005). CANSURV: a Windows program for population-based cancer survival analysis. Computer methods and programs in biomedicine , 80 (3), 195-203.


          22. OSA (Online Survival Analysis),這個不是打不開,而是網站直接就有錯誤...希望早點修復吧!不過好像不是我所想的那個樣子。

          Montes-Torres et al. (2016). Advanced online survival analysis tool for predictive modelling in clinical data science. PloS One (IF=2.776), 11 (8).


          23. SurvCurv,沒人的數據,其它的還不是非常熟悉,感興趣的自行摸索。

          Ziehm et al. (2015). SurvCurv database and online survival analysis platform update. Bioinformatics (IF=4.531), 31 (23), 3878-3880. 閱讀此文。


          24. TCPA v3.0,此數據庫是基于蛋白質組學結果的,不僅僅是生存分析,還有更多的功能。網站能打開,但是非常慢,你們自己想辦法看看吧!

          Chen et al. (2019). TCPA v3. 0: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Molecular & Cellular Proteomics (IF=4.828), 18 (8 suppl 1), S15-S25. 閱讀此文。


          25. LCE專注肺癌基因表達和臨床關系的數據庫。

          Cai et al. (2019). LCE: an open web portal to explore gene expression and clinical associations in lung cancer. Oncogene (IF=6.634), 38 (14), 2551-2564. 閱讀此文


          26. DriverDBv3,能打開,就是速度有點慢。

          Liu, S. H., Shen, P. C., Chen, C. Y., Hsu, A. N., Cho, Y. C., Lai, Y. L., ... & Chung, I. F. (2020). DriverDBv3: a multi-omics database for cancer driver gene research. Nucleic acids research (IF=11.147), 48 (D1), D863-D870. 閱讀此文


          27. LncACTdb 2.0,在做生存分析方面,操作極其簡單粗暴!

          Wang, P., Li, X., Gao, Y., Guo, Q., Wang, Y., Fang, Y., ... & Liu, W. (2019). LncACTdb 2.0: an updated database of experimentally supported ceRNA interactions curated from low-and high-throughput experiments. Nucleic acids research (IF=11.147), 47 (D1), D121-D127. 閱讀此文


          28. Oncomine,需要用高效單位郵箱注冊,不是很方便使用。


          最后,今天介紹的這些工具有不少是需要用Chrome瀏覽器才能打開或者正常顯示的,大家記著一個瀏覽器不行的話,就多試試別的,360、搜狗、火狐、Chrome、IE、Edge都試試。還有個很重要的事,家里用的移動寬帶經常上不了很大一部分上述國外網站,臨時的比較湊合的解決辦法是用手機開個熱點是時候考慮徹底換個運營商了,電信手機卡、電信寬帶趕緊通通搞起!


          如果還有什么好的工具沒有列出來的,大家可以留言,以后我再慢慢匯總。


          主站蜘蛛池模板: 国产精品视频一区二区三区不卡| 成人丝袜激情一区二区| 无码夜色一区二区三区| 中文字幕一区日韩在线视频| 丝袜人妻一区二区三区| 日韩免费一区二区三区在线播放| 无码AV一区二区三区无码| 成人精品一区二区三区电影| 一区二区无码免费视频网站| 99精品一区二区免费视频| 久久福利一区二区| 日韩在线不卡免费视频一区| 免费av一区二区三区| 国产综合精品一区二区三区| 在线观看精品一区| 亚洲av午夜福利精品一区人妖| 亚洲国产欧美日韩精品一区二区三区 | 无码人妻精品一区二区在线视频 | 一区二区三区在线观看免费| 日韩精品无码久久一区二区三| 高清一区二区三区视频| 无码人妻一区二区三区在线水卜樱 | 久久久国产精品亚洲一区| 女女同性一区二区三区四区| 一夲道无码人妻精品一区二区 | 色国产在线视频一区| 三上悠亚精品一区二区久久| 国产在线视频一区二区三区| 亚洲一区二区三区首页| 一区二区三区四区精品| 国产午夜精品一区二区三区极品| 青青青国产精品一区二区| 国产伦精品一区二区三区| 国产在线观看一区精品| 在线日韩麻豆一区| 波多野结衣一区二区| 国产免费无码一区二区| 青娱乐国产官网极品一区| 少妇精品久久久一区二区三区| 日韩美一区二区三区| 国产美女一区二区三区|