整合營銷服務商

          電腦端+手機端+微信端=數據同步管理

          免費咨詢熱線:

          50行Python代碼繪制數據大屏,這個可視化框架真的太神了

          者: 俊欣

          來源:關于數據分析與可視化

          今天小編來為大家安利另外一個用于繪制可視化圖表的Python框架,名叫Dash,建立在FlaskPlotly.js以及React.js的基礎之上,在創建之出的目的是為了幫助前端知識匱乏的數據分析人員,以純Python編程的方式快速制作出交互特性強的數據可視化大屏,在經過多年的迭代發展,如今不僅僅可以用來開發在線數據可視化作品,即便是輕量級的數據儀表盤、BI應用甚至是博客或者是常規的網站都隨處可見Dash框架的影子,今天小編就先來介紹一下該框架的一些基礎知識,并且來制作一個簡單的數據可視化大屏。

          Dash框架中的兩個基本概念

          我們先來了解一下Dash框架中的兩個基本概念

          • Layout
          • Callbacks

          Layout顧名思義就是用來設計可視化大屏的外觀和布局,添加一些例如下拉框、單選框、復選框、輸入框、文本框、滑動條等組件,其中Dash框架對HTML標簽也進行了進一步的封裝,使得我們直接可以通過Python代碼來生成和設計每一個網頁所需要的元素,例如

          <div>
              <h1>Hello World!!</h1>
              <div>
                  <p>Dash converts Python classes into HTML</p>
              </div>
          </div>
          

          我們轉化成DashPython結構就是

          html.Div([
              html.H1('Hello Dash'),
              html.Div([
                  html.P('Dash converts Python classes into HTML'),
              ])
          ])
          

          Callbacks也就是回調函數,基本上是以裝飾器的形式來體現的,實現前后端異步通信的交互,例如我們在點擊按鈕或者下拉框之后出現的功能就是通過回調函數來實現的。

          安裝和導入模塊

          在導入模塊之前,我們先用pip命令來進行安裝,

          ! pip install dash   
          ! pip install dash-html-components
          ! pip install dash-core-components                           
          ! pip install plotly
          

          然后我們導入這些剛剛安裝完的模塊,其中dash-html-components用來生成HTML標簽,dash-core-components模塊用來生成例如下拉框、輸入框等組件,這里我們還需要用到plotly模塊,因為我們需要用到的數據來自該模塊,里面是一眾互聯網公司過去一段時間中股價的走勢

          import dash
          import dash_html_components as html
          import dash_core_components as dcc
          import plotly.graph_objects as go
          import plotly.express as px
          

          讀取數據并且繪制折線圖

          那么我們讀取數據并且用plotly來繪制折線圖,代碼如下

          app = dash.Dash()   #實例化Dash
          df = px.data.stocks() #讀取股票數據 
          
          def stock_prices():
              # 繪制折線圖
              fig = go.Figure([go.Scatter(x=df['date'], y=df['AAPL'],
                                          line=dict(color='firebrick', width=4), name='Apple')
                               ])
              fig.update_layout(title='股價隨著時間的變幻',
                                xaxis_title='日期',
                                yaxis_title='價格'
                                )
              return fig
              
          app.layout = html.Div(id='parent', children=[
              html.H1(id='H1', children='Dash 案例一', style={'textAlign': 'center',
                                                           'marginTop': 40, 'marginBottom': 40}),
              dcc.Graph(id='line_plot', figure=stock_prices())
          ])
          
          if __name__ == '__main__':
              app.run_server()
          

          我們點擊運行之后會按照提示將url復制到瀏覽器當中便可以看到出來的結果了,如下所示

          從代碼的邏輯上來看,我們通過Dash框架中的Div方法來進行頁面的布局,其中有參數id來指定網頁中的元素,以及style參數來進行樣式的設計,最后我們將會指出來的圖表放在dcc.Graph()函數當中。

          添置一個下拉框

          然后我們再添置一個下拉框,當我們點擊這個下拉框的時候,可是根據我們的選擇展示不同公司的股價,代碼如下

          dcc.Dropdown(id='dropdown',
                       options=[
                           {'label': '谷歌', 'value': 'GOOG'},
                           {'label': '蘋果', 'value': 'AAPL'},
                           {'label': '亞馬遜', 'value': 'AMZN'},
                       ],
                       value='GOOG'),
          

          output

          options參數中的label對應的是下拉框中的各個標簽,而value對應的是DataFrame當中的列名

          df.head()
          

          output

          添加回調函數

          最后我們將下拉框和繪制折線圖的函數給連接起來,我們點擊下拉框選中不同的選項的時候,折線圖也會相應的產生變化,

          @app.callback(Output(component_id='bar_plot', component_property='figure'),
                        [Input(component_id='dropdown', component_property='value')])
          def graph_update(dropdown_value):
              print(dropdown_value)
              # Function for creating line chart showing Google stock prices over time
              fig = go.Figure([go.Scatter(x=df['date'], y=df['{}'.format(dropdown_value)],
                                          line=dict(color='firebrick', width=4))
                               ])
              fig.update_layout(title='股價隨著時間的變幻',
                                xaxis_title='日期',
                                yaxis_title='價格'
                                )
              return fig
          

          我們看到callback()方法中指定輸入和輸出的媒介,其中Input參數,里面的component_id對應的是下拉框的id也就是dropdown,而Output參數,當中的component_id對應的是折線圖的id也就是bar_plot,我們來看一下最后出來的結果如下

          最后,全部的代碼如下所示

          小新 編譯自 Insight Data Blog

          量子位 出品 | 公眾號 QbitAI

          寫個網頁能有多麻煩?在大多數公司里,這項工作分為三步:

          1. 產品經理完成用戶調研任務后,列出一系列技術要求;

          2. 設計師根據這些要求來設計低保真原型,逐漸修改得到高保真原型和UI設計圖;

          3. 工程師將這些設計圖實現為代碼,最終變成用戶使用的產品。

          這么多環節,任何地方出一點問題,都會拉長開發周期。因此,不少公司,比如Airbnb已經開始用機器學習來提高這個過程的效率。

          Airbnb內部的AI工具,從圖紙到代碼一步到位

          看起來很美好,但Airbnb還沒公開該模型中端到端訓練的細節,以及手工設計的圖像特征對該模型的貢獻度。這是該公司特有的閉源解決方案專利,可能不會進行公開。

          好在,一個叫Ashwin Kumar的程序員創建了一個開源版本,讓開發者/設計師的工作變得更簡單。

          以下內容翻譯自他的博客:

          理想上,這個模型可以根據網站設計的簡單手繪原型,很快地生成一個可用的HTML網站:

          SketchCode模型利用手繪線框圖來生成HTML網站

          事實上,上面例子就是利用訓練好的模型在測試集上生成的一個實際網站,代碼請訪問:https://github.com/ashnkumar/sketch-code。

          從圖像標注中獲取靈感

          目前要解決的問題屬于一種更廣泛的任務,叫做程序綜合(program synthesis),即自動生成工作源代碼。盡管很多程序綜合研究通過自然語言規范或執行追蹤法來生成代碼,但在當前任務中,我會充分利用源圖像,即給出的手繪線框圖來展開工作。

          在機器學習中有一個十分熱門的研究領域,稱為圖像標注(image caption),目的是構建一種把圖像和文本連接在一起的模型,特別是用于生成源圖像內容的描述。

          圖像標注模型生成源圖像的文本描述

          我從一篇pix2code論文和另一個應用這種方法的相關項目中獲得靈感,決定把我的任務按照圖像標注方式來實現,把繪制的網站線框圖作為輸入圖像,并將其相應的HTML代碼作為其輸出內容。

          注:上段提到的兩個參考項目分別是

          pix2code論文:https://arxiv.org/abs/1705.07962

          floydhub教程:https://blog.floydhub.com/turning-design-mockups-into-code-with-deep-learning/?source=techstories.org

          獲取合適的數據集

          確定圖像標注方法后,理想中使用的訓練數據集會包含成千上萬對手繪線框圖和對應的HTML輸出代碼。但是,目前還沒有我想要的相關數據集,我只好為這個任務來創建數據集。

          最開始,我嘗試了pix2code論文給出的開源數據集,該數據集由1750張綜合生成網站的截圖及其相應源代碼組成。

          pix2code數據集中的生成網站圖片和源代碼

          這是一個很好的數據集,有幾個有趣的地方:

          • 該數據集中的每個生成網站都包含幾個簡單的輔助程序元素,如按鈕、文本框和DIV對象。盡管這意味著這個模型受限于將這些少數元素作為它的輸出內容,但是這些元素可通過選擇生成網絡來修改和擴展。這種方法應該很容易地推廣到更大的元素詞匯表。

          • 每個樣本的源代碼都是由領域專用語言(DSL)的令牌組成,這是該論文作者為該任務所創建的。每個令牌對應于HTML和CSS的一個片段,且加入編譯器把DSL轉換為運行的HTML代碼。

          彩色網站圖像變手繪圖

          為了修改我的任務數據集,我要讓網站圖像看起來像手工繪制出的。我嘗試使用Python中的OpenCV庫和PIL庫等工具對每張圖像進行修改,包括灰度轉換和輪廓檢測。

          最終,我決定直接修改原始網站的CSS樣式表,通過執行以下操作:

          1. 更改頁面上元素的邊框半徑來平滑按鈕和DIV對象的邊緣;

          2. 模仿繪制的草圖來調整邊框的粗細,并添加陰影;

          3. 將原有字體更改為類似手寫的字體;

          最終實現的流程中還增加了一個步驟,通過添加傾斜、移動和旋轉來實現圖像增強,來模擬實際繪制草圖中的變化。

          使用圖像標注模型架構

          現在,我已經處理好數據集,接下來是構建模型。

          我利用了圖像標注中使用的模型架構,該架構由三個主要部分組成:

          1. 一種使用卷積神經網絡(CNN)的計算機視覺模型,從源圖像提取圖像特征;

          2. 一種包含門控單元GRU的語言模型,對源代碼令牌序列進行編碼;

          3. 一個解碼器模型,也屬于GRU單元,把前兩個步驟的輸出作為輸入,并預測序列中的下一個令牌。

          以令牌序列為輸入來訓練模型

          為了訓練模型,我將源代碼拆分為令牌序列。模型的輸入為單個部分序列及它的源圖像,其標簽是文本中的下一個令牌。該模型使用交叉熵函數作為損失函數,將模型的下個預測令牌與實際的下個令牌進行比較。

          在模型從頭開始生成代碼的過程中,該推理方式稍有不同。圖像仍然通過CNN網絡進行處理,但文本處理開始時僅采用一個啟動序列。在每個步驟中,模型對序列中輸出的下個預測令牌將會添加到當前輸入序列,并作為新的輸入序列送到模型中;重復此操作直到模型的預測令牌為,或該過程達到每個文本中令牌數目的預定義值。

          當模型生成一組預測令牌后,編譯器就會將DSL令牌轉換為HTML代碼,這些HTML代碼可以在任何瀏覽器中運行。

          用BLEU分數評估模型

          我決定使用BLEU分數來評估模型。這是機器翻譯任務中常用的一種度量標準,通過在給定相同輸入的情況下,衡量機器生成的文本與人類可能產生內容的近似程度。

          實際上,BLEU通過比較生成文本和參考文本的N元序列,以創建修改后的準確版本。它非常適用于這個項目,因為它會影響生成HTML代碼中的實際元素,以及它們之間的相互關系。

          最棒的是,我還可以通過檢查生成的網站來比較當前的實際BLEU分數。

          觀察BLEU分數

          當BLEU分數為1.0時,則說明給定源圖像后該模型能在正確位置設置合適的元素,而較低的BLEU分數這說明模型預測了錯誤元素或是把它們放在相對不合適的位置。我們最終模型在評估數據集上的BLEU分數為0.76。

          福利:定制網頁風格

          后來,我還想到,由于該模型只生成當前頁面的框架,即文本的令牌,因此我可以在編譯過程中添加一個定制的CSS層,并立刻得到不同風格的生成網站。

          一個手繪圖生成多種風格的網頁

          把風格定制和模型生成兩個過程分開,在使用模型時帶來了很多好處:

          1.如果想要將SketchCode模型應用到自己公司的產品中,前端工程師可以直接使用該模型,只需更改一個CSS文件來匹配該公司的網頁設計風格;

          2. 該模型內置的可擴展性,即通過單一源圖像,模型可以迅速編譯出多種不同的預定義風格,因此用戶可以設想出多種可能的網站風格,并在瀏覽器中瀏覽這些生成網頁。

          總結和展望

          受到圖像標注研究的啟發,SketchCode模型能夠在幾秒鐘內將手繪網站線框圖轉換為可用的HTML網站。

          但是,該模型還存在一些問題,這也是我接下來可能的工作方向:

          1. 由于這個模型只使用了16個元素進行訓練,所以它不能預測這些數據以外的令牌。下一步方向可能是使用更多元素來生成更多的網站樣本,包括網站圖片,下拉菜單和窗體,可參考啟動程序組件(https://getbootstrap.com/docs/4.0/components/buttons/)來獲得思路;

          2. 在實際網站構建中,存在很多變化。創建一個能更好反映這種變化的訓練集,是提高生成效果的一種好方法,可以通過獲取更多網站的HTML/CSS代碼以及內容截圖來提高;

          3. 手繪圖紙也存在很多CSS修改技巧無法捕捉到的變化。解決這個問題的一種好方法是使用生成對抗網絡GAN來創建更逼真的繪制網站圖像。

          相關地址

          代碼:https://github.com/ashnkumar/sketch-code

          原文:https://blog.insightdatascience.com/automated-front-end-development-using-deep-learning-3169dd086e82

          — 完 —

          誠摯招聘

          量子位正在招募編輯/記者,工作地點在北京中關村。期待有才氣、有熱情的同學加入我們!相關細節,請在量子位公眾號(QbitAI)對話界面,回復“招聘”兩個字。

          量子位 QbitAI · 頭條號簽約作者

          ?'?' ? 追蹤AI技術和產品新動態

          過使用框架,你可以在同一個瀏覽器窗口中顯示不止一個頁面。

          iframe語法:

          <iframe src="URL"></iframe>

          該URL指向不同的網頁。

          Iframe - 設置高度與寬度

          height 和 width 屬性用來定義iframe標簽的高度與寬度。

          屬性默認以像素為單位, 但是你可以指定其按比例顯示 (如:"80%").

          實例

          <iframesrc="demo_iframe.htm"width="200"height="200"></iframe>

          Iframe - 移除邊框

          frameborder 屬性用于定義iframe表示是否顯示邊框。

          設置屬性值為 "0" 移除iframe的邊框:

          實例

          <iframesrc="demo_iframe.htm"frameborder="0"></iframe>

          使用iframe來顯示目錄鏈接頁面

          iframe可以顯示一個目標鏈接的頁面

          目標鏈接的屬性必須使用iframe的屬性,如下實例:

          實例

          <iframesrc="demo_iframe.htm"name="iframe_a"></iframe><p><a>RUNOOB.COM</a></p>

          HTML iframe 標簽

          標簽說明
          <iframe>定義一個內聯的iframe

          如您還有不明白的可以在下面與我留言或是與我探討QQ群308855039,我們一起飛!


          主站蜘蛛池模板: 国产精品被窝福利一区 | www亚洲精品少妇裸乳一区二区 | 亚洲成人一区二区| 国产微拍精品一区二区| 国产欧美一区二区精品仙草咪| 无码中文人妻在线一区二区三区 | 无码人妻少妇色欲AV一区二区 | 无码人妻精品一区二区蜜桃 | 无码人妻久久一区二区三区| 91精品一区二区三区久久久久| 日本一区二区三区免费高清| 日本一区二区在线不卡| 人体内射精一区二区三区| 精品久久久久久无码中文字幕一区 | 狠狠综合久久av一区二区| 亚洲国产精品一区二区成人片国内| 色婷婷一区二区三区四区成人网| 无码国产精品一区二区免费I6| 日本精品一区二区三区在线视频一 | 麻豆AV一区二区三区| 中文字幕亚洲乱码熟女一区二区| 91成人爽a毛片一区二区| а天堂中文最新一区二区三区| 亚洲综合av一区二区三区 | 久久精品免费一区二区三区| 国产一区二区三区亚洲综合| 在线欧美精品一区二区三区 | 欧美成人aaa片一区国产精品| 亚洲爆乳无码一区二区三区| 精品日韩在线视频一区二区三区 | 人妻无码一区二区三区免费| 精品无码中出一区二区| 亚洲熟女乱色一区二区三区| 亚洲福利视频一区| 国产内射在线激情一区| 日本成人一区二区三区| 91在线一区二区| 中文字幕AV一区二区三区人妻少妇| 亚拍精品一区二区三区| 日韩成人无码一区二区三区| 国产产一区二区三区久久毛片国语 |